Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thin-walled profiles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Dotychczasowy sposób wytwarzania wyrobów w postaci dyfuzorów o zmiennym przekroju polega na tłoczeniu na prasie dwóch odpowiednio ukształtowanych wytłoczek, a następnie ich spawaniu. W efekcie powstaje detal łączony w dwóch miejscach. W projekcie podjęto próbę opracowania innej technologii kształtowania dyfuzorów, która pozwoli na wyeliminowanie przynajmniej jednego ze spawów łączącego dwa oddzielne elementy dyfuzora. W artykule przedstawiono wyniki badań gięcia rurek na zimno wraz z podgrzewaniem laserem diodowym o mocy 3,6 kW oraz o promieniu lasera 8x30 mm. Badania te stanowiły wytyczne do zaprojektowania i wy-konania stanowiska badawczego składającego się z manipulatora oraz urządzenia sterującego ruchem obrotowym głowicy lasera. Stanowisko zaprojektowano w taki sposób, aby głowica lasera mogła obracać się względem osi kształtowanego detalu. Takie rozwiązanie umożliwia podgrzewanie kształtowanego wyrobu nie tylko punktowo, ale również na jego obwodzie. Pozwoli ono na uzyskanie równomiernego rozkładu temperatury w miejscu gięcia kształtowanego elementu, co bezpośrednio wpływa na zwiększenie jego plastyczności. Na nowo powstałym stanowisku przeprowadzono próby gięcia na gorąco zarówno profili stożkowych, jak i rurek. Kształtowane elementy w postaci rur wypełniano piaskiem kwarcowym, natomiast w przypadku profili jako wypełnienie zastosowano specjalnie skonstruowany trzpień wielosegmentowy. Wyniki z przeprowadzonych prób technologicznych zamieszczono w drugiej części artykułu. W dalszej części prac przewiduje się kontynuację badań gięcia z podgrzewaniem laserowym strefy kształtowanej zarówno wyrobów okrągłych (rura), jak i o zmiennym przekroju (dyfuzor).
EN
The current method of manufacturing products in the form of diffusers with variable cross-section is based on press forming two drawpieces of appropriate shape and then welding them. In effect, a detail joined in two places is created. This project undertakes to develop alternate diffuser shaping technology, which will make it possible to eliminate at least one of the welds joining two separate diffuser elements. This article presents the results of cold bending tests of tubes with heating via 3.6 kW diode laser, emitting an 8x30 mm laser beam. These tests laid the groundwork for guidelines for designing and building a testing station consisting of a manipulator and device controlling the rotation of the laser head. The station was designed so that the laser head can rotate relative to the axis of the shaped detail. Such a solution does not only allow for point heating of the shaped product, but also for heating over its circumference. This makes it possible to achieve uniform temperature distribution at the bending point of the shaped element, which directly increases its plasticity. Hot bending tests of both conical profiles and tubes were performed at the newly created station. Shaped elements, in the form of tubes, were filled with quartz sand, and in the case of profiles, a specially designed multi-segment mandrel was applied as the filling. The results of performed technological trials are given in the second part of the article. In further work, it is planned to continue bending tests with laser heating of the shaped zone, for both round products (tube) and products with variable cross-section (diffuser).
EN
This paper will highlight the influence of the strain rate effect occurring during pulse loading on dynamic stability of aluminium profiles. Current work is the development of the analysis carried in [1]. The C–channel cross–section beams/columns are made of 6060 T4, T5, T6 and T66 aluminium alloy. The rectangular–shape compressing pulse is analysed. The static material characteristics had been obtained from the experimental tensile tests and afterwards modified for dynamic response according to Perzyna viscoplastic model. The results of the numerical computations are presented whereas the critical load and DLF (Dynamic Load Factor) basing on the selected dynamic buckling criterion is determined.
EN
This paper presents the results of numerical analysis of the aluminium profiles subjected to dynamic, of different time duration impulse loading. The analysis includes the change in cross–section of the roof rail, ranging from the open ”C profile”, through closed ”Rectangular” to hybrid ”Tandem with brackets”. The main aim of this study is to model the dynamic response of the car roof rail to impulse loading, which may appear in case of collision.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.