Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thin-walled member
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In cold-formed thin-walled cross-sections, complex phenomena, related to local and distortional buckling of slender walls containing edge fold stiffeners, occur. In order to determine the design resistance of such a cross-section in the post-buckling range, it is necessary to determine the critical stress of local buckling for individual walls. On this basis, the corresponding effective widths are determined. Subsequently, the distortional buckling effect is taken into account, typically by reducing the thickness of the substitute cross-section of the stiffener. The paper presents approximation formulas of plate buckling coefficients (k*) that are used to calculate critical local buckling stress for technically crucial stress distributions. The full range of variation of the index of elastic fixity of the longitudinal edge of the thin-walled cross-section was considered. The coefficients were determined for a more accurate, relative to Eurocode 3, computational model. Both the effect of reciprocal elastic restraint of component walls of the cross-section and the effect of longitudinal stress variation, which occurs in transversely bent beams, were taken into account.
PL
W profilowanych na zimno przekrojach cienkościennych występują złożone zjawiska związane z wyboczeniem lokalnym i dystorsyjnym smukłych ścianek zawierających krawędziowe odgięcia usztywniające. W celu wyznaczenia nośności obliczeniowej takiego przekroju w zakresie nadkrytycznym należy wyznaczyć naprężenia krytyczne wyboczenia lokalnego dla poszczególnych ścianek. Na tej podstawie wyznacza się odpowiednie szerokości efektywne. W kolejnym kroku uwzględnia się efekt wyboczenia dystorsyjnego, najczęściej poprzez redukcję grubości tzw. zastępczego przekroju usztywnienia. W pracy przedstawiono wzory aproksymacyjne płytowych współczynników wyboczeniowych (k*) służące do obliczania naprężeń krytycznych wyboczenia lokalnego dla technicznie ważnych rozkładów naprężeń. Uwzględniono pełny zakres zmienności wskaźnika sprężystego utwierdzenia krawędzi podłużnej półki przekroju cienkościennego. Współczynniki wyznaczono dla dokładniejszego, w stosunku do Eurokodu 3, modelu obliczeniowego. Uwzględniono zarówno efekt wzajemnego sprężystego zamocowania ścianek składowych przekroju, jak również występujący w poprzecznie zginanych belkach efekt wzdłużnej zmienności naprężeń.
PL
Stalowe regały wysokiego składowania są jedną z najbardziej popularnych cienkościennych konstrukcji szkieletowych, można je spotkać w centrach magazynowych oraz w sklepach wielkopowierzchniowych. Specyfika ich pracy sprawia, że przed projektantami stoi niełatwe zadanie: muszą stworzyć konstrukcję, która będzie nie tylko bezpieczna i ekonomiczna, ale także możliwie najbardziej elastyczna podczas użytkowania. Wszystko to sprawia, że badania eksperymentalne są nierozerwalną częścią procesu projektowego.
EN
Steel storage racks are one of most popular frame structures, they can be found in warehouse centers and large-are stores. The specificity of their work means that the designers face a difficult task, they must create a structure that will not only be safe and economical, but also as flexible as possible during use. All this makes experimental research an integral part of the design process.
EN
The paper presents results of a parametric study into energy absorption capability of thin-walled square section columns with redrawn dents, subjected to axial impact compressive load. Thin-walled aluminum tubes with four dents in the corners were under investigation. The varying parameters were the dent’s depth and distance of the dent to the base. The study was performed using Finite Element numerical code. Three crashworthiness indicators were examined: peak crushing force, crash load efficiency and stroke efficiency. The numerical results are shown in load-shortening diagrams, as well as diagrams and maps of crashworthiness indicators. It was found, that the main factor influencing a crushing mode and, subsequently, energy absorption capability, is a dent depth. The dent distance from the base is of less importance. Also a position of a dent, either at the bottom, or at the top base (the load application point) does not influence the crushing behavior significantly. For the deepest dents the relative increase of crash load efficiency (CLE) amounts 25% in comparison with the column without dents.
PL
W artykule przedstawiono wyniki badań numerycznych zdolności pochłaniania energii energoabsorberów w postaci cienkościennych słupów o przekroju kwadratowym z wgłębieniami, poddanych osiowym obciążeniom udarowym. Badano wpływ parametrów geometrycznych oraz położenia inicjatorów zgniotu w postaci walcowych przetłoczeń w narożach na zachowanie się konstrukcji oraz właściwości energoabsorbcyjne (współczynnik efektywności zgniotu- Ste oraz procentowy stosunek siły średniej do maksymalnej - CLE). Obliczenia numeryczne prowadzono z wykorzystaniem MES, programu Abaqus 6.14. Wyniki przedstawiono w postaci charakterystyk obciążenie – skrócenie oraz diagramów i wykresów. Stwierdzono, że istotny wpływ na zachowanie się konstrukcji podczas uderzenia oraz jej energochłonność ma głębokość przetłoczenia, mniej istotne jest jego położenie. W przypadku słupów z najgłębszymi przetłoczeniami względny wzrost współczynnika CLE, w porównaniu z wynikami uzyskanymi dla słupa gładkiego wynosi 25%.
EN
Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.
PL
Stosowane obecnie w budownictwie metalowym pręty cienkościenne należą do grupy elementów, których nośność przekroju jest warunkowana zjawiskami lokalnej lub dystorsyjnej utraty stateczności. Przekrój poprzeczny klasy 4. jest na ogół złożony ze smukło – płytowych ścianek, które w analizie można modelować wprost jako płyty. W aktualnie obowiązującej normie europejskiej EC3, zjawiska wyboczenia lokalnego i wyboczenia dystorsyjnego, pomimo różnic w długościach wyboczeniowych, uwzględnia się poprzez redukcję nośności przekroju. Stosuje się tutaj metodę szerokości efektywnej (dla wyboczenia lokalnego) oraz grubości zredukowanej (dla wyboczenia dystorsyjnego). Po uwzględnieniu obu zjawisk, otrzymujemy przekrój efektywny służący do obliczania odpowiednich charakterystyk geometrycznych (np. Aeff, Weff). Natomiast ogólną utratę stateczności pręta uwzględnia się za pomocą współczynnika redukcyjnego obliczanego na podstawie smukłości względnej ogólnej utraty stateczności. W związku z tym, poprawne wyznaczenie naprężeń krytycznych wyboczenia lokalnego (w zakresie sprężystym) nabiera szczególnego znaczenia. Stanowi bowiem podstawę do wyznaczenia: 1) szerokości efektywnych poszczególnych płyt (ścianek), 2) naprężeń krytycznych wyboczenia dystorsyjnego (zastępczy przekrój poprzeczny usztywnienia składa się z odpowiednich szerokości efektywnych), oraz 3) ogólnej smukłości względnej elementu. W normach EC3 dotyczących projektowania elementów cienkościennych (o przekroju klasy 4.) przyjęto koncepcję separacji płyt składowych przekroju przy założeniu ich swobodnego podparcia na podłużnych krawędziach łączenia. Ponadto pominięto, często występujący w praktyce, efekt wzdłużnej zmienności naprężeń. Takie założenia upraszczające odbiegają od rzeczywistego zachowania się elementu cienkościennego pod obciążeniem. Liczne badania doświadczalne oraz symulacje numeryczne (np. MES) wykazują, że w rzeczywistych przekrojach cienkościennych występuje wzajemne sprężyste zamocowanie ścianek składowych. Ponadto, w wielu technicznie ważnych przypadkach, występuje wzdłużna zmienność naprężeń. W pracy przedstawiono metodę obliczeń nośności przekroju cienkościennego wrażliwego na wyboczenie lokalne na podstawie utraty stateczności najsłabszej płyty (ścianki). Punktem wyjścia jest założenie, że w przekroju cienkościennym można wyróżnić ściankę „najsłabszą”, która jest sprężyście zamocowana w sąsiedniej ściance usztywniającej (RP). „Płytą krytyczną” (CP) nazwano tę ściankę kształtownika cienkościennego, która w danym stanie naprężenia charakteryzuje się najniższymi naprężeniami krytycznymi. Założono, że połączenie płyty krytycznej z płytą podpierającą jest sztywne, tzn. na podłużnej krawędzi ich łączenia zachowane są warunki ciągłości przemieszczeń (kątów obrotu) i sił (momentów zginających). Dalej ściankę krytyczną modelowano, w zależności od warunków brzegowych, jako sprężyście zamocowaną przeciw obrotowi płytę przęsłową lub wspornikową. Oznacza to, że naprężenia krytyczne dla płyty krytycznej są wyższe niż przy normowym założeniu jej swobodnego podparcia. Stopień sprężystego zamocowania opisano za pomocą wskaźnika utwierdzenia κ, zmieniającego się od 0 dla swobodnego podparcia, do 1 dla pełnego utwierdzenia. Wskaźnik ten oszacowano w oparciu o założoną postać wymuszonego odkształcenia płyty usztywniającej, przy uwzględnieniu wpływu naprężeń ściskających w jej płaszczyźnie. Współczynniki wyboczeniowe (k) dla tak sprężyście zamocowanych i zmiennie obciążonych na długości płyt krytycznych zamieszczono w cyklu artykułów autora [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. W pracach tych uwzględniono wzdłużny rozkład naprężeń wg funkcji stałej, liniowej lub nieliniowej (wg paraboli 2. stopnia). Dla tak obliczonych naprężeń krytycznych wyznaczono „lokalną” nośność krytyczną przekroju, która ogranicza zakres ważności teorii prętów cienkościennych Własowa (o nieodkształcalnym konturze przekroju). Przekroje, w których (dla określonych proporcji geometrycznych) ścianki ściskane ulegają jednoczesnej utracie stateczności (pod danym rozkładem naprężeń), nazwano przekrojami „zerowymi”. W ich przypadku nie występuje wzajemne sprężyste zamocowanie płyt sąsiednich i spełnione jest normowe założenie separacji przegubowo podpartych płyt składowych przekroju pręta.
5
PL
W pracy zamieszczono wyniki badań stateczności mimośrodowo ściskanych ścianek wspornikowych stanowiących części składowe elementów cienkościennych. Ścianki takie charakteryzują się dużymi smukłościami i są wrażliwe na lokalną utratę stateczności. W celu rozwiązania zadania zastosowano model cienkiej płyty wspornikowej. Funkcję ugięcia zapisano w postaci szeregu wielomianowo – sinusowego. Uwzględniono warunki sprężystego zamocowania przeciw obrotowi oraz różne rozkłady naprężeń (wg funkcji stałej, liniowej i paraboli 2. stopnia) na długości elementu. Naprężenie krytyczne odniesiono do najbardziej ściskanej krawędzi dla danego przypadku obciążenia. Współczynniki wyboczeniowe k wyznaczono metodą energetyczną. Pokazano wykresy współczynnika k dla takich przypadków obciążenia, których nie znaleziono w literaturze. Wyprowadzono wzory aproksymacyjne współczynnika k dla stałego na długości płyty rozkładu naprężeń. We wzorach uwzględniono różne przypadki mimośrodowego ściskania w funkcji wskaźnika sprężystego utwierdzenia. Omówiono sposoby oszacowania współczynnika k dla pośrednich wartości parametrów oraz przedstawiono prostą formułę przybliżoną dla długich płyt wspornikowych. Sposób wykorzystania wzorów aproksymacyjnych pokazano w przykładzie obliczeniowym. Stwierdzono, że uwzględnienie sprężystego zamocowania krawędzi ścianki (płyty) wspornikowej w segmencie pręta cienkościennego oraz poprzecznej i wzdłużnej zmienności naprężeń prowadzi do precyzyjniejszego wyznaczenia naprężeń krytycznych wyboczenia lokalnego. Poprawia to dokładność odwzorowania zachowania się elementu cienkościennego w inżynierskim modelu obliczeniowym. Tak wyznaczone naprężenia krytyczne mogą także posłużyć do dokładniejszego wyznaczenia szerokości współpracujących różnie obciążonych ścianek wspornikowych.
EN
The paper presents the results of investigations into the stability of eccentrically compressed cantilever walls constituting components of thin-walled members. The characteristics of such walls include high slenderness and susceptibility to local stability loss. To solve the problem, a model of a thin cantilever plate was used. The deflection function was written in the form of the polynomial–sine series. The conditions of elastic restraint against rotation and different stress distributions (in accordance with a constant function, linear function and the parabola 20) over the length of the member were accounted for. The critical stress was referred to the edge that was most compressed for a given load case. The buckling coefficients k were determined using the energy method. The plots of the coefficient k were presented for those load schemes that were not found in the literature. Approximation formulas for the coefficient k were derived for stress distribution that was constant over the plate length. In the formulas, different cases of eccentric compression were accounted for in the form of a function of the elastic fixity index. The means of estimating the coefficient k for intermediate parameter values were discussed. Also, a simple approximation formula for long cantilever plates was presented. The use of approximation formulas was demonstrated on the computational example. It was concluded that taking into account the elastic restraint of the edge of the cantilever wall (plate) in the thin-walled bar segment, and also the transverse and longitudinal stress variation gives more precise determination of the critical stress in local buckling. That contributes to improvement in the representation of the thin-walled element behaviour in the computational engineering model. The critical stress determined in the way described in the study can also help to more accurately determine of effective widths of cantilever walls which are under different loads.
EN
Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.
PL
Współcześnie stosowane elementy cienkościenne o przekroju otwartym charakteryzują się dużymi smukłościami ścianek. W związku z tym są wrażliwe na zjawiska lokalne związane z ich wyboczeniem. Z tego punktu widzenia, krawędź swobodną ściskanej ścianki wspornikowej wzmacnia się często usztywnieniem krawędziowym, powodując wzrost naprężeń krytycznych i zmianę miarodajnej postaci wyboczenia. Usztywniona ścianka wspornikowa jest w większości przypadków sprężyście zamocowana przeciw obrotowi w ściance przęsłowej (np. w środniku kształtownika cienkościennego) i często występuje w niej wzdłużna zmienność naprężeń.
PL
Przedstawiono w postaci schematu procedury obliczeniowej sposób wykorzystania pakietu obliczeniowego Mathematica do rozwiązania zagadnień skręcania wieloprzęsłowych, pryzmatycznych prętów cienkościennych o przekroju otwartym znajdujących się w ośrodku obrotowo-sprężystym typu Winklera. Zaprezentowano ponadto przykłady wykorzystania wyprowadzonego rozwiązania do obliczeń statycznych skręcanego pręta ciągłego w ośrodku obrotowo-sprężystym, a także sporządzania linii wpływu przemieszczeń i sił przekrojowych.
EN
Computational procedure as a flowchart, implemented by Mathematica package, to solve torsion problems of continuous, prismatic thin-walled opened members situated in a Winkler rotational-elastic environment is presented. Moreover, examples of the derived solution are shown as applied in static calculations of torsional continuous members in rotational-elastic environment. Graphs of influence lines and internal forces are attached. Mathematica package allows derivation of a solution of complex non-uniform torsion of freely loaded continuous thin-walled opened cross section. Members can be flexibly supported and be situated in a Winkler rotational-elastic medium influencing along shear centre axis. One of the benefits is that Mathematica does not require proficient knowledge of distributions, which is necessary using solutions given by Gosowski [1, 2]. The accuracy of the obtained particular results was compared to examples published in [1] and the difference is not greater than 2%. Furthermore, the solutions were verified by FEM commercial software SOFiSTiK using bar elements with 7 DOF in each node. For default values of cross section characteristics calculated by the software the biggest discrepancy reached almost 37%. The accuracy may be increased through manual setting of warping resistance Iw and especially torsional inertia It. Thus the obtained results are exactly the same as the values calculated by Mathematica.
8
EN
The paper presents preliminary results of analytical investigations concerning an axially compressed closely spaced element, verified experimentally. The investigated tentative element consists of three branches, made of cold-bent steel sheet. Two branches with a channel-bar cross-section are strengthened by the third branch with a tubular crosssection, the walls of which adjoin the webs of the channel bars. The walls of the three branches forming a bisymmetric cross-section are connected with each other flexibly by means of blind bolts. The tubular branch takes over more than 30 % of the entire load of the complex tentative element, as has been proved both by analytical and experimental results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.