Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thin wall castings
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Thin wall ductile and austempered iron castings
EN
It has been shown that it is possible to produce thin wall castings made of ductile iron with wall thickness in the range of 1.2 to 2.9 mm (without chills, cold laps and misruns). Thin wall ductile iron castings can be lighter (380 g) than their substitutes made of aluminium alloys (580 g). The kinetics of austenitising transformation was studied in unalloyed ductile iron. The advance of transformations during austenitising was monitored by measurement the fraction of martensite and also by dilatometic studies. It has been shown that in thin wall ductile iron castings austenitising at 880 oC for 20 minutes is adequate to obtain the austenite matrix at the end of the first stage of austempering heat treatment cycle.
EN
In paper it is presented thin wall ductile iron casting (TWDI) as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 - 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm), yield strength (Rp0,2) and slightly lower elongation (E) of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6). Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.
3
Content available remote Temperature drop of liquid iron in thin wall channels during mold filling
EN
This work deals with first period of metal cooling in mold cavity. It has been performed thermal analysis of flooding metal stream in thin wall ductile iron with the shape of Archimedes spirals. It has been presented comparison of real temperature drop with predictions according to the analytical equations based on heat balance and with simulation using Fluent program. Additionally velocity decrease predicted by Fluent program is compared to the experimental data. Moreover change of cooling rate as function of spiral length of liquid metal before eutectic solidification is presented.
4
Content available remote Castability of ductile iron in thin walled castings (TWDI)
EN
In work it has been presented results of influence of pouring temperature (Tp) and carbon equivalent (CE) on castability of ductile iron in thin walled castings with wall thickness of 1, 2 and 3 mm, respectively. Analysis was done on ductile iron with carbon equivalent ranging from 4.30 to 5.00 and pouring temperature varied from 1400 to 1500°C. It has been shown that a statistical liner relationship exists between wall thickness and castability. Influence of CE and Tp on castability of cast iron flowing through channel with wall thickness of 2 and 3 mm can be presented by means of correlation equations (L= f(CE,Tp)). Statistical analysis shows that pouring temperature has much higher influence on castability in comparison with influence of carbon equivalent.
5
Content available remote Thermal analysis of ductile iron in thin walled casting
EN
Hypereutectic ductile iron was cast in self hardening moulding sand to produce castings with the shape of Archimedes spirals and with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce thin wall ductile iron (TWDI). In this work it has been carried out thermal analysis in spiral with 3 mm wall thickness. The present work provides results of thermal analysis, that are initial temperature of metal in mould cavity, velocity of metal stream as well as solidification time. Measurement of temperature shows that there is essential its drop during filling of mould cavity and amounts 230 °C for distance 700 mm from the beginning of spiral. On the basic on first derivative of temperature versus time characteristic solidification points were distinguish, namely solidification of primary graphite, austenite dendrite and eutectic. Experimental measurements of temperature drop during filling of mould cavity along with microscopic examinations of castings structure can be used to verify computer modeling and simulation of fluid flow and thermal field in TWDI.
6
Content available remote Structure of ductile iron in thin walled castings
EN
It this work it has been shown that it is possible to produce thin wall ductile iron (TWDI) castings with considerably length using Archimedes spiral with wall thickness of 1, 2 and 3 mm. Inmould technique was used to produce TWDI. It has been estimated castability and metallographic investigations were made using different moulding materials. From castability measurements result that it is possible to obtain thin wall ductile iron castings with wall thickness down to 1 mm with castability of 200 mm. Using mould with small ability to absorb heat castability increases twice. At wall thickness equal 3 mm castability reaches 1000 mm and using LDASC sand its value increases to over 1500 mm. Structure parameters for different wall thickness and moulding materials (graphite nodule count, ferrite and cementite fraction) are plotted versus distance from the beginning of spiral. It is shown strong influence of LDASC sand (material with small ability to absorb heat) on structure parameters (N_F, V_f i V_C) revealing gradient character of TWDI.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.