Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thickness swelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Large quantities of waste newspapers and sugarcane bagasse are prevalently discarded by open burning or indiscriminate dumping, thereby posing severe danger to the environment and public health. This study sought to examine the feasibility of managing the wastes by recycling them into value-added products for building construction. Composite panels were fabricated using waste newspaper paste (WNP) with sugarcane bagasse particles (SBP) varied at 0, 25, 50, 75, and 100 % by weight of the composite mix. Epoxy resin was thoroughly mixed with its hardener and applied as binder. The samples were developed in triplicates per proportion of the SBP adopted and then dried completely before their thermophysical and strength properties were evaluated. It was observed that variations in mean values of water absorption (28.57 – 39.43 %), thickness swelling (6.21 - 8.33 %), specific heat capacity (1232 - 1312Jkg-1K-1) trended positively with increasing proportions of the SBP. Whereas nailability remained 100.0 % in all the cases, bulk density (689.4 - 640.5 kgm-3), thermal conductivity (0.1186 - 0.1163 Wm-1K-1), thermal diffusivity (1.396 - 1.384 x 10-7 m2s-1), and flexural strength (2.572 - 2.280 N/mm2) correlated inversely with the added fractions of the SBP. Generally, it was found that the samples could perform satisfactorily if applied as ceiling or partition elements in building design. Therefore, recycling of sugarcane bagasse and waste newspapers as described in this study could serve as a promising way of solving their disposal problems and also enhance achievement of low-cost and safe buildings.
EN
Purpose: The composites based on natural fibre and wood can be destroyed by fungi attack, even the lignocellulosic materials were used as filler in hydrophobic thermoplastic matrix. The aim of this study was to investigate the effect of microcrystalline cellulose (MCC) and nutshell fibre content on decay resistance of natural fibre composites. Design/methodology/approach: Half of the composite samples were immersed in water for 60 days and then incubated by fungi to investigate the leaching effect on biological resistance. Furthermore, water absorption rate and thickness swelling of samples were determined during water immersing. For this purpose, total nine thermoplastic composites filled different MCC rate (5%, 10% and 15%) and nutshell content (30%) were produced. Decay test were conducted by using a white rot fungus–Trametes versicolor, and a brown rot fungus–Tyromyces palustris, according to EN 113 standard. Findings: Based on findings from this study, weight loss, water absorption rate and thickness swelling correlated with lignocellulosic content in composites. Samples exhibited less than 1% weight loss in decay test and excellent biological resistance against testing fungi. Research limitations/implications: Weight loss (%) and moisture content (%) values of MCC-nutshell HDPE composites after Tyromyces palustris and Trametes versicolor attack were found under 3% and 20%, respectively. Low weight loss values obtained in the study are supposed to be related with the low moisture content. Originality/value: There is not a study dealing with the decay resistance of WPCs produced by a combination of nutshell and MCC fibres. In addition, there is not a substantial study on the effects of MCC/plastic ratio for decay performance of WPCs contained nutshell after long-term leaching test.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.