Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thermocline
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the buoyant sub-surface salinity maxima in the Gulf of Riga
EN
Thermohaline structure in the Gulf of Riga (GoR) was investigated by a multi-platform measurement campaign in summer 2015. Stratification of the water column was mainly controlled by the temperature while salinity had only a minor contribution. Buoyant salinity maxima with variable strength were observed in the intermediate layer of the Gulf of Riga. The salinity maxima were likely formed by a simultaneous upwelling–downwelling event at the two opposite sides of the Irbe strait. The inflowing salty water did not reach the deeper (> 35 m) parts of the gulf and, therefore, the near-bottom layer of the gulf remained isolated throughout the summer. Thus, the lateral water exchange regime in the near bottom layer of the Gulf of Riga is more complicated than it was thought previously. We suggest that the occurrence of this type of water exchange resulting in a buoyant inflow and lack of lateral transport into the near-bottom layers might contribute to the rapid seasonal oxygen decline in the Gulf of Riga.
EN
While modeling water dynamics in dam reservoirs, it is usually assumed that the flow involves the whole water body. It is true for shallow reservoirs (up to several meters of depth) but may be false for deeper ones. The possible presence of a thermocline creates an inactive bottom layer that does not move, causing all the discharge to be carried by the upper strata. This study compares the results of hydrodydynamic simulations performed for the whole reservoir to the ones carried out for the upper strata only. The validity of a non-stratified flow approximation is then discussed.
3
Content available remote On resonant interaction of capillary-gravity wave and internal wave
EN
The fourth order nonlinear evolution equations are derived for a capillary-gravity wave packet for the case of resonant interaction with internal wave in the presence of a thin thermocline at a finite depth in deep water. These equations are used to make stability analysis of a uniform capillary-gravity wave train when resonance condition is satisfied. It is observed that for surface gravity waves the instability region expands with the decrease of thermocline depth. For surface capillary-gravity waves the growth rate of instability is much higher if the thermocline is formed at lower depth and for a fixed thermocline depth it increases with the increase of wave amplitude.
EN
A fourth order non-linear evolution equation is derived for a capillary-gravity wave packet in deep water in the presence of a thin thermocline including the effect of wind and viscous dissipation in water. In deriving this equation it has been assumed that the wind induced basic current in water is exponential and the effect of shear in air flow and viscous dissipation in water is accounted for by including a term in the evolution equation. The nonlinear evolution equation is used to study the stability of a uniform capillary-gravity wave train. Expressions for the maximum growth rate of instability and wave number at marginal stability are obtained. From results shown graphically it is found that the inclusion of wind effect increases the growth rate of instability irrespective of the presence of a thin thermocline. For waves with a small wave number, a thin thermocline has a stabilizing influence both in the presence and in the absence of wind input and the maximum growth rate of instability decreases with the increase of thermocline depth. But for waves with a large wave number a thin thermocline has no influence.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.