Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thermochemical process
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The valorisation fine coal waste is still very limited in creating energy, especially syngas. This study aims to convert fine coal waste into synthetic gas via gasification using catalyst. Fine coal gasification takes place at 350–750 °C in an updraft gasifier using catalyst of 12.5–25 wt% natural zeolite. The research results show that the addition of zeolite has synergy with increasing temperature. The syngas produced at 750 °C and 12.5 wt% zeolite consisted of 32 vol% H2, 30.1 vol% CO, 27.7 vol% CH4 and 5.1 vol% CO2. The carbon conversion efficiency and high heating value (HHV) of synthetic gas are 88.34% and 18.97 MJ/Nm3. Fine coal has the potential to be reused as an energy source in the future.
EN
The utilisation of fine coal waste is still limited, even though its availability is very abundant in the mining industry. This study utilises fine coal by converting it into syngas through catalytic gasification. The gasification process was carried out at a temperature range of 350–550°C for 10–50 minutes using natural zeolite as a catalyst. The syngas composition and quality parameters were evaluated through the H2/CO ratio, heating value, and gasification efficiency. From the research results, fine coal contained high amounts of carbon and fixed carbon. Temperature is the variable that most influences the gasification process. The addition of zeolite actively increased the CO content in the syngas. The H2/CO ratio of syngas >1, the highest HHV and LHV 16.15 and 14.46 MJ/Nm3 with the highest carbon conversion efficiency value of 88.85%, made fine coal very suitable to be used as raw material for the gasification process to produce environmentally friendly syngas.
EN
The present study aims at investigating and simulating the hydrogen cycle production at low temperatures using thermochemical reactions. The cycle used in this work is based on the dissociation of water molecules depending on a copper chlorine couple. Furthermore, the proposed method uses mainly thermal energy provided by a solar thermal field. This proposed cycle differs from what is found in the literature. However, most of the thermochemical cycles for hydrogen production work at quite high temperatures which is a technical challenge. Therefore, the maximum temperature used in the present cycle is limited to 500◦C. A thermodynamic analysis based on both the first and second laws is performed to evaluate the energy, exergy and efficiency of each reaction as well as the overall exergetic efficiency of the system. Furthermore, a parametric study is conducted to figure out the impact of the surrounding temperatures on the overall exergetic efficiency using commercial energy simulation software. The results show that the cycle can achieve an exergy efficiency of 30.5%.
PL
W artykule przedstawiono metodykę budowy baz wiedzy zawierających reguły rozmyte wykorzystywane w zadaniach wnioskowania o właściwościach warstw wierzchnich wytwarzanych w procesach cieplno-chemicznych, w szczególności procesach azotowania gazowego. Podstawę prezentowanej metodyki stanowi zintegrowane współdziałanie baz danych oraz modeli sztucznej inteligencji opracowanych z użyciem logiki rozmytej. Przedstawiono struktury danych dedykowane do odwzorowywania parametrów i zależności funkcyjnych kompleksowo charakteryzujących materiał podłoża, środowisko procesowe oraz właściwości warstwy wierzchniej. Na przykładzie wybranych właściwości warstw wierzchnich konstytuowanych w rzeczywistych procesach technologicznych przeprowadzono weryfikację opracowanych modeli komputerowych wnioskowania rozmytego.
EN
The paper presents the methodology of building the knowledge base that includes fuzzy rules used for inference about properties of surface layers obtained in thermochemical processes, in gas nitriding processes in particular. The basis of presented methodology is an integral cooperation between databases and artificial intelligence based on fuzzy logic. Moreover, the paper shows data structures for mapping the parameters and function relations that comprehensively characterise substrate material, process environment and surface layer properties. In order to verify elaborated computer models of fuzzy inference a comparison research was performed on selected properties of surface layers constituted in real technological processes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.