Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thermoacoustic refrigerator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Chłodzenie termoakustyczne to perspektywiczna technologia, która wykorzystuje energię fali akustycznej do transportu ciepła z ośrodka o niskiej do ośrodka o wysokiej temperaturze. Do głównych zalet tej technologii zalicza się dużą niezawodność, prostą konstrukcję urządzeń, a przede wszystkim brak szkodliwych dla środowiska czynników chłodniczych. Z drugiej strony wadą tej technologii jest relatywnie niska sprawność w porównaniu do współczesnych rozwiązań konwencjonalnych. Głównie z tej przyczyny urządzenia termoakustyczne wciąż pozostają w fazie szerokich badań mających na celu poprawę ich wydajności. W artykule tym przedstawiono kierunki obecnie prowadzanych prac. Uwagę zwrócono zwłaszcza na badania eksperymentalne z zakresu wyboru optymalnych parametrów konstrukcyjnych i eksploatacyjnych termoakustycznych urządzeń chłodniczych z falą stojącą. Omówiono również budowę oraz podstawową zasadę działania takich urządzeń.
EN
Thermoacoustic refrigeration is a perspective technology capable of transporting heat from a low temperature source to a high-temperature source by utilizing the acoustic power input. It shows the advantages of high reliability, simple construction and operating without hazardous refrigerants. On the other hand, this technology has disadvantage of relative low efficiency in comparison to conventional solutions. Thus, many efforts have been taken in order to improve the performance of the thermoacoustic coolers. The article presents the review of current research. The main attention is focused on the experimental investigations of the optimal selection of the design and the operational parameters of the thermoacoustic refrigerators with the standing wave. The construction and principles of operations of such devices are also described in this paper.
PL
W artykule przedstawiono studium konstrukcji chłodziarki termoakustycznej, złożonej z wzbudnika akustycznego, rezonatora, regeneratora oraz zimnego i gorącego wymiennika ciepła. Pokazano również metodologię optymalizacji konstrukcji chłodziarki termoakustycznej z falą stojącą. Przyjęto, że gazem roboczym w analizowanym urządzeniu jest powietrze o ciśnieniu bezwzględnym 10 bar. Średnią temperaturę gazu wewnątrz chłodziarki założono na poziomie 230,65 K, a różnica temperatur między wymiennikiem zimnym i gorącym jest równa 75 K. Zbadano wpływ zmiany znormalizowanych pozycji i długości regeneratora na parametry termodynamiczne chłodziarki termoakustycznej (takie jak strumień ciepła i współczynnik efektywności chłodziarki). Podczas tej analizy założono stałą częstotliwość dźwięku wynoszącą fa = 600 Hz. Maksymalną moc cieplną ziębiarki otrzymano dla znormalizowanej pozycji regeneratora xs,n = 0,51 oraz znormalizowanej długości Ls,n = 1. Jednakże, najwyższy współczynnik efektywności chłodziarki (COP), wynoszący ponad 71 % uzyskano dla wartości parametrów wynoszących odpowiednio: xs,n = 0,17 oraz Ls,n = 0,311. Analizy powtórzono zmieniając częstotliwość fali akustycznej w przedziale 200-3000 Hz. Najwyższą wartość współczynnika efektywności osiągnięto dla częstotliwości fali akustycznej fa = 600 Hz. Omówiono koncepcję stanowiska badawczego, wykorzystującego zaprojektowane urządzenie, pozwalającego na eksperymentalną weryfikację przedstawionych wyników analizy termodynamicznej.
EN
The paper presents the feasibility study of thermoacoustic refrigerator design, composed of: acoustic inductor, resonator, stack, hot and cold heat exchangers. In addition, the methodology of optimizing the design of the thermoacoustic refrigerator with standing wave was presented. The ambient air at absolute pressure of 10 bar was assumed as the working gas in the thermoacoustic device. The average gas temperature inside the refrigerator is set at 230.65 K, and the temperature difference between cold and hot heat exchangers is 75 K. The influence of changes of normalized positions and length of the regenerator on the thermodynamic quantities (such as heat flux and Coefficient of Performance) was analyzed. During this analysis, a constant sound frequency of 600 Hz was assumed. The maximum heat output of the device was obtained for the normalized position of the regenerator xs,n = 0.51 and normalized length Ls,n = 1. However, the highest Coefficient of Performence of refrigerators that excess 71% was obtained for the values of parameters corresponding to: xs,n = 0.17 and Ls,n = 0.311. Eventually, the analyzes were performed for variable acoustic wave frequencies in range of 200-3000 Hz. The highest efficiency coefficient was reached for fa = 600 Hz. Finally, the concept of a test stand using a designed device allowing for experimental verification of the presented thermodynamic analysis results was described.
EN
Thermoacoustic refrigerator uses acoustic power to transport heat from a low-temperature source to a high-temperature source. The increasing interest in thermoacoustic technology is caused due to its simplicity, reliability as well as application of environmentally friendly working fluids. A typical thermoacoustic refrigerator consists of a resonator, a stack of parallel plates, two heat exchangers and a source of acoustic wave. The article presents the influence of the stack position in the resonance tube and the acoustic frequency on the performance of thermoacoustic refrigerator with a standing wave driven by a loudspeaker, which is measured in terms of the temperature difference between the stack edges. The results from experiments, conducted for the stack with the plate spacing 0.3 mm and the length 50 mm, acoustic frequencies varying between 100 and 400 Hz and air as a working fluid are consistent with the theory presented in this paper. The experiments confirmed that the temperature difference for the stack with determined plate spacing depends on the acoustic frequency and the stack position. The maximum values were achieved for resonance frequencies and the stack position between the pressure and velocity node.
PL
Przedstawiono rozwiązania dotyczące wykorzystania powietrza jako gazu roboczego w termoaskustycznych urządzeniach chłodniczych. W tym celu zostało zbudowane doświadczalne urządzenie termoakustyczne z powietrzem jako czynnikiem roboczym. Artykuł zawiera wyniki badań doświadczalnych oraz odpowiedź na pytanie, w jakich warunkach powietrze może być wykorzystywane, a w jakich nie.
EN
The article tries to answer the question can air be used as working fluid in thermoacoustic engines. There was built a experimental thermoacoustic refrigerator, in which air is a working fluid. There are shown experimental results obtained from investigation of refrigerator. The article answers on question in which kind of application air can be used as an working fluid and in which it is not possible.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.