Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  thermal chamber
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Designing products operating in harsh conditions is a challenging task. Years of experience, developed standards and good practices are crucial in achieving the intended result. The article shows a methodology for designing electronic systems based on the worst-case analysis (WCA) and comparing its outcomes with the experimental verification of an actual circuit through large-scale tests. The analysed diode-based semiconductor circuit is part of a temperature measuring system of industrial application. The objective of the design and analysis process is to achieve a reliable solution, which has all the required functionalities under actual, extreme operating conditions. The preliminary circuit design is developed using ideal components. The truth table, which represents customer requirements, is created to check the correct operation of the system. Simulation software, such as LTSpice, are used as the main tools to verify the correct functioning based on ideal or close-to-real component models. Next, based on the results of computer simulations, the WCA is conducted, considering all extreme (worst) operating environment parameters, such as, among others, ambient temperature or ageing. WCA results were verified through an experimental, large-scale measurement of the real system, with defined forward voltage as a function of the current flowing through the semiconductor at various ambient temperatures.
2
Content available Experimental testing of the vehicle heating system
EN
An important problem in the design of machinery and equipment at the stage of determining their structure is the issue of providing adequate thermal comfort to users while operating in variable climatic and environmental conditions. This issue is of particular importance because all types of machinery and devices are equipped with very expensive and automated control and monitoring system, which should guarantee adequate warming conditions and should work under different climatic conditions. Examples of these tendencies are special solutions for vibroacoustic insulation of the inside of the devices, special air conditioning equipment, special constructions, ergonomic inside solutions. The process of shaping the discussed structural design of vehicles in terms of meeting the relevant technical and operational criteria is currently being increasingly realized through experimental tests of prototypes supported by numerical calculations. The purpose of this paper is to present the methodology of conducting test stand as a stage for the experimental determination and verification of temperature distribution, the location of heating and air conditioning devices in a prototype vehicle in variable climatic conditions (minus 15º C). The research was carried out in a large-scale climate chamber. It covered the process of heating up the passenger area of the bus and the time of temperature stabilization on the inside of the vehicle while operating the heating systems. An additional attempt was made to test the heating system while the vehicle was in motion and to open the vehicle door to simulate the stopping of the vehicle at the bus stop. Another aspect that was analysed was the impact of the installed convector on the vehicle when the liquid heater was off.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.