Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tetrazoles derivatives
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Zastosowania biologiczne tetrazoli i ich pochodnych
EN
Due to the wide range of applications of tetrazoles, in recent years the number of publications and patents describing the synthesis, structural and physicochemical studies of compounds that contain tetrazole fragments in their structure has increased significantly [1]. Tetrazoles are unique compounds containing some of the most electron deficient aromatic rings so that they have one of the highest electron affinity [3]. They also have a whole range of coordination possibilities from simple monodentate ligands to complex polymer systems in which several of nitrogen atoms per tetrazole molecule are involved in the metal coordination. The presence of the metal allows a much wider application, combining the simple geometries and properties of organic compounds with the wealth of structure and properties of the metals. The discussed heterocyclic compounds are not only the most modern high energetic materials for military purposes [5], but also fungicides [6], herbicides [7], a promising component in many modern therapies [8] and drugs [11] (e.g. derivatives of indomethacin, drug for arthritis [1]). One of the most important fields in which tetrazoles and their derivatives are widely used is medicinal chemistry. Because of their high physiological activity and low toxicity, they are versatile in both biochemical and pharmaceutical applications [9]. Moreover, different compounds containing tetrazoles have antimicrobial (Fig. 1) [11, 13–17], antifungal (Fig. 2) [18–20], antiparasitic (Fig. 13–16) [34–36], antivirus (Fig. 17–19) [37–41], analgesic and anti-inflammatory (Fig. 3, 4) [17, 21–24], anti-epileptic, anticonvulsant (Fig. 10–13) [30–33], antihypertensive, antitumor (Fig. 5–9) [25–29], antidiabetic and other properties [12]. This article is a review of the selected tetrazoles and their derivatives in terms of their biological applications.
EN
Five novel high-nitrogen content (N>50%) derivatives of tetrazole are introduced in the study reported here. The assessment of various properties of these compounds were performed, which include physicothermal properties (crystal density, condensed phase heat of formation, melting point, enthalpy of fusion and entropy of fusion), detonation performance (velocity and pressure of detonation, detonation temperature and power), sensitivity with respect to external stimuli (impact, shock, friction and electric spark) and combustion performance (specific impulse). The predicted results of these compounds are compared with dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate (TKX-50) and octanitro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) as a high performance ionic salt and a neutral explosive, respectively. The novel energetic compounds were found to have higher detonation and combustion performance than either TKX-50 or HMX. The new explosives are therefore good candidates to obtain high detonation and combustion performance in plastic bonded explosives (PBXs) and composite solid propellants, respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.