Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  test trójosiowego ściskania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Aparat trójosiowego ściskania jest jednym z najbardziej rozpowszechnionych w laboratoriach geotechnicznych urządzeń badawczych służących do określania parametrów charakteryzujących zachowanie się gruntów pod względem wytrzymałości i sztywności. Urządzenie to ma możliwość pomiaru szeregu kluczowych parametrów, wśród których zasadniczą rolę odgrywa pomiar siły osiowej, odkształcenia osiowego oraz ciśnienia wody porowej w gruncie. Wskazane w normie europejskiej (Eurokod 7) podejście w zakresie projektowania geotechnicznego i sprawdzania stanów granicznych wymaga korzystania z parametrów efektywnych. Tym samym ich oznaczanie w warunkach laboratoryjnych wymaga prawidłowej (w zakresie procedury nasycania) i poprawnej (w zakresie lokalizacji pomiaru) rejestracji ciśnienia wody w przestrzeni porowej gruntu w trakcie badania. Standardowo pomiar tego ostatniego parametru wykonywany jest w dolnej części próbki lub w bardziej zaawansowanej formie, w połowie wysokości próbki. To drugie podejście jest bardziej miarodajne, ale wprowadza jednak wymóg przerwania ciągłości membrany otaczającej próbkę gruntu, co może prowadzić do niekontrolowanej penetracji wody z komory do wnętrza próbki. Rozwiązaniem tej niedogodności było opracowanie autorskiego projektu czujnika objętego postępowaniem patentowym. Zapewnienie pomiaru bezpośredniego na próbce przy jednoczesnym uniknięciu potencjalnej nieszczelności było możliwe poprzez zastosowanie nowatorskiego czujnika, który mierzy ciśnienie wody w porach gruntu i w sposób bezprzewodowy przesyła wyniki na zewnątrz komory. W artykule przedstawiono opis tego rozwiązania oraz sposób integracji nowego czujnika z rejestratorem i pozostałymi komponentami zestawu aparatu „trójosiowego” ściskania. Skuteczność zaproponowanego rozwiązania wykazano poprzez przeprowadzenie pełnej kalibracji wyników uzyskiwanych z czujnika. Uzyskane wyniki wykazały skuteczności zastosowanego bezprzewodowego czujnika do bezpośredniego pomiaru ciśnienia wody w gruncie.
EN
The triaxial compression apparatus is one of the most popular research devices in geotechnical laboratories used to determine the parameters characterizing the behavior of soils in terms of strength and stiffness. This device has the ability to measure a number of key parameters, among which the measurement of axial force, axial deformation and pore water pressure in the ground plays an essential role. The approach to geotechnical design and limit state verification indicated in the European standard (Eurocode 7) requires the use of effective parameters. Thus, their determination in laboratory conditions requires correct (in terms of the saturation procedure) and correct (in terms of measurement location) recording of water pressure in the soil pore space during the test. As a standard, the measurement of the latter parameter is performed in the lower part of the sample, or in a more advanced form, in the middle of the sample’s height. The latter approach is more reliable, but it introduces a requirement to break the continuity of the membrane surrounding the soil sample, which may lead to uncontrolled penetration of water from the chamber into the sample. The solution to this inconvenience was the development of a proprietary sensor design covered by patent proceedings. Providing direct measurement on the sample while avoiding potential leakage was possible by using an innovative sensor that measures the water pressure in the soil pores and wirelessly sends the results outside the chamber. The article presents a description of this solution and the method of integrating the new sensor with the recorder and other components of the triaxial compression apparatus set. The effectiveness of the proposed solution was demonstrated by carrying out a full calibration of the results obtained from the sensor. Validation of the results was performed on several series of tests carried out on several types of soils with different filtration properties. The obtained results showed the effectiveness of the wireless sensor used for direct measurement of water pressure in the ground.
EN
The paper presented the coreless inductive sensor, its construction and principle of operation. The impact of temperature on the outcome of a measurement performed with the inductor was discusses, together with the possibility of temperature compensation of the inductor’s performance. Subsequently, the reasons for limited measurement accuracy and resolution were discussed, particularly under the variable pressure in the order of some hundreds MPa. Two types of such sensor were presented: a sensor for measuring linear strains, e.g. during compressibility measurements, and an sensor for measuring circumferential strains during triaxial compression tests. Additionally, the manners of fixing the sensor on rock samples were presented. Finally, some examples of the sensor application were shown, together with the results of measurements of deformations of rock samples - especially in cases when resistance gauges cannot be used, and the samples are subjected to a load in the uniaxial and triaxial system, under the hydrostatic pressure of up to 400 MPa and the normal one.
PL
W Pracowni Odkształceń Skał Instytutu Mechaniki Górotworu prowadzone są badania właściwości mechanicznych skał. Wymaga to precyzyjnego pomiaru odkształcenia, na ogół pod wysokim ciśnieniem hydrostatycznym, które symuluje warunki panujące w głębi górotworu. Ciśnienie hydrostatyczne (do 400MPa w aparacie GTA-10) i ograniczona do kilku milimetrów przestrzeń w komorze ciśnieniowej na zainstalowanie odpowiedniego przyrządu, a także spękania i kawerny w skałach powodują znaczne trudności pomiaru odkształcenia z wymaganą rozdzielczością (nawet 10-6). Stosowanie tensometrów elektrooporowych naklejanych wprost na próbkę często jest zawodne, gdyż ciśnienie wgniata ścieżkę rezystancyjną w nierówności próbki, powodując jej przerwanie, a co gorsze, fałszuje wyniki pomiaru. Wypełnianie szczelin lub kawern różnymi podkładami jak klej epoksydowy, gips, jest problematyczne. W przypadku skał przewodzących (nasączonych solanką) istnieje ryzyko zwarcia ścieżki rezystancyjnej do podłoża. Często naklejenie tensometru jest niemożliwe w przypadku skał słabo zwięzłych (fliszowe). Inne metody pomiaru np. transformator różnicowy z ruchomym rdzeniem (LVDT) ma ograniczoną odporność na wysokie ciśnienie i temperaturę i zbyt duże rozmiary. Czujnik LDT (Local Deformation Transducer), czyli naklejony tensometr rezystancyjny na sprężystą taśmę stalową, ma ograniczony zakres pomiaru deformacji do kilku procent i małą czułość. Opracowano nową metodę pomiaru odkształcenia opartą na jednowarstwowej, bezrdzeniowej cewce indukcyjnej, wykonanej z cienkiego sprężystego drutu (0,2 mm) i średnicy zwojów kilku milimetrów. Tak wykonany czujnik jest instalowany do zaczepów zamontowanych na badanej próbce (rys. 1 i 2). Odkształcenie próbki powoduje zmianę długości cewki (czujnika), a zatem jej indukcyjności. Czujnik stanowi indukcyjną część generatora LC, umieszczonego na zewnątrz komory. Zmiana indukcyjności skutkuje zmianą częstotliwości drgań, którą łatwo zmierzyć z dużą precyzją. Prostota czujnika gwarantuje jego dużą odporność na ciśnienie hydrostatyczne, temperaturę i udary mechaniczne. Minimalizacja błędów spowodowanych zmiennym ciśnieniem i temperaturą realizowana jest dwoma sposobami. Po pierwsze, czujnik wykonano z wysokorezystywnego drutu, co skutkuje dużymi termicznymi zmianami jego rezystancji, które zmieniają częstotliwość drgań (poprawka częstotliwości w generatorze Colpitts’a (4) przeciwstawnie do wpływu temperatury na indukcyjność czujnika (rozszerzalność termiczna). Umożliwia to prawie całkowitą kompensację termiczną czujnika w kilkunastostopniowym zakresie (rys. 4). Drugim sposobem jest użycie czujnika referencyjnego wykonanego w identyczny sposób jak czujnik pomiarowy, który jest zamocowany na wsporniku o znanej ściśliwości i rozszerzalności termicznej (rys. 7). Zmiany częstotliwości z czujnika referencyjnego są poprawkami do wskazań czujnika pomiarowego. Oba czujniki są naprzemiennie podłączane do tego samego generatora poprzez elektroniczny przełącznik (rys. 5). Zastosowanie jednego generatora powoduje, że poprawki te umożliwiają również praktycznie całkowitą eliminację błędu pomiaru ze względu na zmiany temperatury otoczenia i napięcia zasilania na generator i częstościomierz. Charakterystyka przetwornika długość-częstotliwość jest nieliniowa (rys. 3), co wynika z zależności między długością cewki czujnika, więc jej indukcyjnością, a częstotliwością rezonansową obwodu LC (1). Najdokładniej charakterystykę czujnika otrzymać można przez wzorcowanie. Uwzględnione są wtedy głównie pasożytnicze indukcyjności i pojemności połączeń, których wartości trudno obliczyć lub zmierzyć. W pomiarach należy dążyć, na ile to możliwe, do montowania krótkiego czujnika do długich próbek, w ten sposób zmiany długości badanego materiału będą większe, a krótszy czujnik dozna większego odkształcenia, więc czułość pomiaru będzie duża. Jednak zbyt krótki czujnik ma małą indukcyjność i wtedy jego czułość ograniczy indukcyjność połączeń (2). Opracowano dwa podstawowe typy takiego czujnika. Pierwszy, do pomiaru odkształceń liniowych, np. do pomiaru ściśliwości (rys. 2 i 6), o prostej cewce, który jest mocowany do próbki za pośrednictwem zaczepów przytwierdzonych do niej. W ten sposób czujnik nie kontaktuje się bezpośrednio z powierzchnią próbki, i odkształca się bez tarcia, co umożliwia precyzyjny pomiar, szczególnie przy obciążaniu cyklicznym. Bazę pomiarową można dostosowywać do długości próbki, mocując czujnik do zaczepów poprzez łączniki, uzyskując globalny pomiar odkształceń. Czujnik mierzy zmiany długości z rozdzielczością poniżej 1 μm, przy maksymalnych odkształceniach czujnika o kilkadziesiąt procent. Przykładowe pomiary przedstawiają rysunki 8 i 9. Na rys. 10 pokazano wyniki testu pomiaru ściśliwości stali, przy użyciu czujnika referencyjnego. W trzech cyklach obciążania, podczas których zmiany temperatury wywołane sprężaniem i rozprężaniem cieczy (do 350 MPa) sięgały kilkunastu °C. Histereza i rozrzut pomiaru w kolejnych cyklach wynosiły najwyżej kilka mikrometrów przy rozdzielczości około 0.2 μm. Czujnik stosowany jest również w pomiarach poza komorą ciśnieniową. Np. fotografia (rys. 11) przedstawia czujnik przy pomiarze ugięcia próbki drewna pobranego w kopalni soli Wieliczka. Fotografia na rys. 13 przedstawia stanowisko do pomiaru deformacji osiowych i obwodowych brykietu węglowego podczas testu jednoosiowego ściskania. Drugi typ czujnika, do pomiaru dużych odkształceń obwodowych (kilkadziesiąt procent) w teście konwencjonalnego trójosiowego ściskania, w którym próbka jest jednocześnie ściskana ciśnieniem hydrostatycznym (okólnym) a następnie obciążana osiowo tłokiem prasy poruszającym się wewnątrz komory ciśnieniowej. W ciśnieniu hydrostatycznym setek MPa na ogół skały zachowują się plastycznie i w teście tym siła działająca osiowo na cylindryczną próbkę powoduje odkształcenie jej nawet o kilkadziesiąt procent, do postaci beczki. Pomiar odkształceń obwodowych jest realizowany czujnikiem indukcyjnym uformowanym na kształt torusa, przez spięcie jego końców izolacyjną płytką (rys. 1). Czujnik na próbce utrzymywany jest dzięki sile sprężystości jego zwojów. Na rys. 14. pokazano efekty trójosiowego testu: odkształcenie osiowe ε1 (pomiar ruchu tłoka prasy, na zewnątrz komory) i poprzeczne ε3 (czujnikiem toroidalnym) oraz zmianę objętości ΔV, walcowej próbki dolomitu. Jeśli nie są mierzone deformacje poprzeczne, to aktualny przekrój próbki wyliczany jest na podstawie odkształcenia osiowego, przy założeniu stałości objętości próbki (ν = const. = 0,5). Uproszczenie to daje w miarę zadawalające wartości naprężenia do granicy wytrzymałości materiału, a po jej przekroczeniu zawyża naprężenia (cienka przerywana linia). Podsumowując, można stwierdzić, że przedstawione czujniki odkształceń współpracujące z generatorem LC rozwiązały problem pomiaru odkształceń skał porowatych, słabo zwięzłych lub przewodzących, szczególnie w badaniach ciśnieniowych. Mają wysoką czułość oraz bardzo szeroki zakres pomiaru, od mikronów do centymetrów. Prostota i mały koszt wykonania, odporność na udary mechaniczne i łatwość mocowania do badanego obiektu czyni je atrakcyjnym narzędziem pomiarowym. Zbędny jest przetwornik analog/cyfra. Możliwość kompensacji termicznej czujnika i zastosowanie czujnika referencyjnego umożliwia pomiar w zmiennym ciśnieniu (GPa) i temperaturze (kilkaset stopni) oraz pozwoliło praktycznie wyeliminować wpływ zmian temperatury otoczenia i napięcia zasilania na generator i częstościomierz, umożliwiając długotrwałe, nawet wielodniowe pomiary. Osiągana rozdzielczość pomiaru jest poniżej 1 μm, przy dokładności około 1%. Maksymalne ciśnienie hydrostatyczne, przy którym wykonano pomiary odkształcenia omawianym czujnikiem wynosiło 1,4 GPa w aparacie GCA-30. Trudno określić maksymalną wartość ciśnienia uniemożliwiającą pomiar takim czujnikiem. Na pewno, przy zastosowaniu czujnika referencyjnego, są to setki a nawet tysiące GPa.
EN
This paper presents the results of laboratory tests carried out in order to formulate effective stress law. The law was sought for two different cases: first - when rock was treated as a porous Biot medium (Biot, 1941; Nur & Byerlee, 1971) and second - when the law was formulated according to definition of Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second one effective pressure equation (9) and effective pressure value (11) were found on the basis of results of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology given by Nowakowski (2007). On the basis of Biot coefficients set of values was found that volumetric strain of the pore space described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture of rock were important. The individual triaxial compression test results showed that for tested rock an effective pressure equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Lichtman, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This happened particularly in the case when the porous fluid was non-inert carbon dioxide. In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation (15) decreased while the differential strength limit was increasing. This might be caused by, so called, dillatancy strengthening (see Zoback & Byerlee, 1975). Another considered important parameter of the equation (15) was the value of the effective press p'. The results showed that the value of this parameter was practically independend on the pore fluid type. This conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 1990) so these results should be treated with caution. There are no doubts, however, over p' increasing simultaneously with increase in Rσ1-σ3. Basically, the differential strength limit of the specimen is greater the greater is confining pressure applied to it. Thus, higher Rσ1-σ3 values are accompanied by higher p'.
PL
W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byerlee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) oraz wartości ciśnienia efektywnego (11). Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi (dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyznaczano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 9166. Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego ściskania (ang. „individual test” - por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprężenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1-σ3. Przedmiotem badań były próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące). Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunkowane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika w zależności od tego czy medium porowym jest ciecz, czy gaz. Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowakowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera (Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu (por. także Hołda, 1990). Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1-σ3 tym wyższa wartość α, czyli tym silniej manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p - pp (Gustkiewicz, 1990). Wzrostowi temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien się okazać dla wyższych wartości Rσ1-σ3 znacząco większy. W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań sugerują, że wartość współczynnika α maleje ze wzrostem Rσ1-σ3. Przyczyną może tu być tzw. Wzmocnienie dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia porowego na wartość Rσ1-σ3. ulegnie zmniejszeniu, co powinno dać α < 1. Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W rozważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które - zastosowane do skały dla pp = 0 - da w efekcie taka samą wartość Rσ1-σ3 jak para niezerowych ciśnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1-σ3 = const. dla danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną natomiast ze wzrostem Rσ1-σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1-σ3 towarzyszą wyższe wartości p'.
4
Content available remote A study of a mixture of coarse and fine sands
EN
The present study investigates both an experimental work on coarse (Leighton Buzzard Sand fraction B) and fine (Leighton Buzzard Sand fraction E) sand mixtures, and a modeling of the results. The experimental database is based on a laboratory study of saturated coarse and fine sand mixtures with various mix ratios. In the tests, pore water pressure generation (u), deviatoric stress (q), and strain levels (ε) have been measured in a triaxial testing apparatus. Then, the results have been modelled using stepwise regression (SR). The input variables in the developed SR models are the fines content, and strain, and the outputs are deviatoric stress, pore water pressure, and undrained Young's modulus. The proposed SR models are presented as simple explicit mathematical functions for further use by researchers.
PL
Obecna analiza dotyczy badań doświadczalnych wykonywanych zarówno na gruboziarnistej (Leighton Buzzard Sand fraction B), jak również drobnoziarnistej mieszaninie piasku (Leighton Buzzard Sand fraction E) i modelowaniu uzyskanych wyników. Wyniki doświadczeń oparte są na badaniu w różnych proporcjach nasyconych mieszanin gruboziarnistego i drobnoziarnistego piasku. Podczas wykonywania testów w aparacie trójosiowego ściskania mierzone były następujące wielkości: ciśnienie wody w porach (u), dewiator naprężenia (q) i poziomy odkształcenia (ε). Następnie, wyniki badań zostały zamodelowane, wykorzystując metodę regresji krokowej (SR). Danymi wejściowymi w zaawansowanej metodzie regresji krokowej (SR) są zawartości ziaren oraz odkształcenia, zaś danymi wynikowymi są dewiator naprężenia, ciśnienie wody w porach i niedrenowany moduł Younga. Zaproponowane modele regresji krokowej są przedstawione w prostych ustalonych funkcjach matematycznych w celu zastosowania ich w przyszłości przez naukowców.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.