Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  test reliability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Determination of possible manoeuvres to be performed by the aircraft requires knowledge of its aerodynamic characteristics including, in particular, characteristics of the aircraft at configuration with deflected control surfaces. In this article, the wind tunnel tests results of the model of passenger Tu-154M aircraft manufactured at the scale 1:40 are presented. The model was designed and manufactured by the Military University of Technology based on the Tu154M aircraft geometry obtained by full-scale object scanning. The model mapped all aircraft control surfaces, along with the gaps between these surfaces and the main wing part. During the tests all the model’s control surface like, flaps, ailerons, spoilers, slots, rudder, elevator and tail plane were deflected at the same deflection angles range as they are used in the full scale aircraft. The aerodynamic characteristics of the tested Tu-154M aircraft model were measured by the 6-component internal balance. Based on the obtained measurements the aircraft model aerodynamic coefficients were calculated. In the article the basic aerodynamic characteristics of the tested Tu-154M aircraft model i.e. lift, drag coefficients as well as pitching, yawing and rolling moment coefficients versus model angles of attack and sideslip angles were presented. The tests were performed in the Institute of Aviation low speed wind tunnels T-1 of the 1.5 m diameter test section at the undisturbed velocity, V∞ = 40 m/s
EN
In this article, the conditions to be met by a two- and three dimensional wind tunnel tests in order to ensure their correctness are presented. First of all, they relate to the flow similarity between the real and wind tunnel conditions. This similarity enforces a wind tunnel calibration, a proper design and manufacturing of the tested models, a proper research, as well as processing of obtained test data including the usage of the wind tunnel corrections. In this work, the majority of these conditions were presented but in particular, the influence of the wind tunnel corrections on the tested models aerodynamic characteristics is consider. The two-dimensional airfoil studies and three-dimensional aircraft model balance investigation were performed in two low speed wind tunnels of a different sizes of theirs test section. The wind tunnel tests were performed in two Institute of Aviation low speed wind tunnels, namely in the wind tunnel T-1 (of the 1.5 m diameter test section) and in the wind tunnel T-3 (of the 5 m diameter test section), at the same undisturbed velocity, V∞ = 40 m/s. The comparison of the lift coefficient characteristic obtained in two different wind tunnels using the same two and three-dimensional models and same measurement techniques enabled to discuss the problem of necessity of the wind tunnel corrections usage.
PL
W niniejszej pracy przedstawiono warunki, jakie powinien spełniać tunel aerodynamiczny, aby po przejściu procesu kalibracyjnego stać się wiarygodnym narzędziem badawczym. Na przykładzie dwuwymiarowych badań profilu szybowcowego omówiono podstawowe zasady prawidłowego modelowania takich badań. Dotyczą one przede wszystkim zachowania podobieństwa przepływu pomiędzy przepływem rzeczywistym a modelowanym. Zachowanie podobieństwa przepływów wymusza z kolei odpowiednie zaprojektowanie badanych modeli, właściwe prowadzenie samych badań, a także obróbkę wyników tych badań uwzględniającą poprawki tunelowe. Badania wykonano w dwóch różnych tunelach aerodynamicznych Instytutu Lotnictwa, przy tej samej prędkości przepływu, V∞ = 40 m/s.
EN
In this paper the conditions to be met by a wind tunnel after passing the calibration process to become a credible research tool are presented. Basing on the two-dimensional airfoil studies, the basic principles of proper modeling of such research is discussed. First of all they relates to the flow similarity between the real and wind tunnel conditions. This similarity enforces a proper design of the tested models, a proper research, as well as processing of the test results including a wind tunnel corrections. The tests were performed in two different Institute of Aviation wind tunnels, at the same undisturbed velocity, V∞ = 40 m/s.
PL
Istotnym czynnikiem wpływającym na awaryjność przewodów wodociągowych jest zmiana temperatury wody i otoczenia przewodu. Wyniki badań przedstawione w artykule potwierdzają ten wpływ. Ogólnie można przyjąć, iż intensywność uszkodzeń przewodów zmienia się wraz ze zmianą temperatury wody w sieci. Wniosek ten dotyczy przede wszystkim przewodów wykonanych z żeliwa szarego. W przypadku przewodów stalowych trudno zaobserwować taką prawidłowość.
EN
The change of temperature of water in the network pipes and of pipes of surround is an essential factor which influences the pipes failures. The research results presented in the paper confirms that influence. In general we can accept that the failure intensity is variable when the temperature of water changes. This conclusion concerns the pipelines made of cast iron. It is difficult to observe such regularity in case of steel pipes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.