Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  teselacja
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The interest in prefabricated building modules is constantly growing due to the increasing possibilities of analysing extensive data sets in computers and the popularity of BIM technology. The ability to manage the position, size and properties of many different elements make it easy to create and evaluate complete modular models at the design stage. Benefits of prefabrication include, among the others, decreased cost, minimisation of environmental impact, and reduced labour on-site. However, making structures and buildings suitable for prefabrication puts additional responsibility on the designer, who needs to choose the modular system, partition the structure and prepare detailed schedules. The article refers to digital control over modular design in the context of the increasing complexity of structures. It focuses on methods and tools that either reduce the designer’s labour or provide him with information that can be used to optimise the structure in terms of efficiency or cost. The article organises the existing trends and presents three experiments on algorithmic control of modular structures to outline the differences in computational methods suitable for particular technologies: masonry, steel, glass and timber construction. The research illustrated in the article was undertaken in response to the need to develop construction technologies in line with the sustainable development trend.
PL
Wykorzystanie modularnych struktur tektonicznych jest głęboko zakorzenione w historii realizacji budowlanej i w teorii architektury. Początkowo budowanie z powtarzalnych porcji materiału było wyłącznie skutkiem uwarunkowań praktycznych. Rozmiar bloków kamiennych, belek drewnianych i cegieł dostosowywano do możliwości transportowych, technik wznoszenia budowli siłą ludzkich mięśni i charakterystyki najprostszych maszyn. Dyskurs teoretyczny renesansu rozszerza rozważania o modularności o aspekty estetyczne. Alberti wspomina o konieczności prowadzenia wątków kamiennych i ceglanych „według wyznaczonych linii i (. . . ) kątów”. Budowle nowożytne, wyrastające z fascynacji perspektywą i szerzej, teorią postrzegania, wykorzystuja modularność dla uwypuklenia wrażeń przestrzennych. Architektura wieków późniejszych skupiona była raczej na wizualnym odbiorze elementów budowlanych niż na ich tektonicznym uporządkowaniu. Dekoracja podporządkowana względom estetycznym przesłaniała wewnetrzne modularne struktury. Zmiany w wartościowaniu przyniósł dopiero wiek dziewiętnasty. Eugène Viollet-le-Duc zwrócił uwagę na piękno średniowiecznych budowli, które eksponowały strukturalny sens pojedynczych elementów i ich agregacji. John Ruskin, otwierając drogę dla dyskursu architektury nowocześnej, zastosował dla oceny dorobku wcześniejszych epok wartościowania bliskie etycznemu. Tektoniczna struktura budowli jest przez niego nazwana prawdą w odróżnieniu od powierzchownej dekoracji. Na tle powyższych rozważan modernizm jawi się jako renesans zainteresowania modularnością. Widzimy to w powszechnym wykorzystaniu nietynkowanych murów, w ekspozycji wiązań, w tworzeniu nowatorskich prefabrykowanych elementów. Współczesne agregacje dodają do historycznych koncepcji komponent ery informacyjnej. Jest nim cyfrowe medium, które obecnie stanowi naturalny język reprezentacji projektów architektonicznych. W przeciwieństwie do medium analogowego składa się z części (bitów), co sprawia, ze lepiej służy do opisu struktur modularnych. Dzięki rosnącej mocy obliczeniowej komputerów wzrastają możliwości zarządzania rozległymi zbiorami danych, co pozwala zapisywać w projekcie dokładne informacje o rodzaju, położeniu, kształcie i innych właściwościach części składowych. Autorzy zestawiają eksperymenty dotyczące algorytmicznego wspomagania projektowania struktur modularnych o różnych naturach. Wykazują, że różne technologie wymagają zastosowania innych metod agregacji. Przedstawione są metody rozliczania prefabrykowanych bloczków w niedostosowanym planie architektonicznym, teselacje dwukrzywiznowych powierzchni za pomocą identycznych płaskich elementów oraz optymalizacja rozkładu desek elewacyjnych w kontekście określonych zasobów materiałowych.
EN
The contemporary trends in the division of structural surfaces used in architectural forms refer to the known principles of mathematics and geometry - a simplified record of the natural world that surrounds us. A tessellation of a repetitive geometric design plays an important role in the discretization of the curvilinear architectural forms in filling out areas or spaces. In the process of determining the distribution of the division of geometrically irregular and complex surfaces, aperiodic tessellation are becoming increasingly used instead of polygonal tessellation, whose characteristic fractal structure is closer to the technology of Nature and can lead to more efficient engineering solutions. In the development of contemporary architecture, the inspiration with bionics is an interesting trend expressing, among others, in imitation of biological processes for the development and construction of organic structures. The purpose of these actions is to search for forms of originality, whose logic of shaping focuses particularly on effectiveness in the use of material and energy. The development of digital tools, especially through algorithms for 3D modeling programs but also through morphogenesis, has enabled generating complex systems. The use of aperiodic tessellation in the era of generative design methods provides new, creative tools in shaping flat and spatial rod structures. One such example in the generative modeling is the use of geometry in non-periodic divisions is Danzer Script, which allows for the design of systems based on a seemingly chaotic structure of the quasi-crystal. This method is interesting because of a characteristic non-periodical element of the structure resulting from its symmetry and manifested in embodiments, structure and physical properties of quasi-crystals. In a time of a universal algorithmization of an architect’s working tools, the use of unobvious, chaotic bionic construction structures creates new opportunities for interdisciplinary and creative architectural designs. The digital tools for modeling rod structures and generating structural divisions based on aperiodic tessellation is a synergistic action to seek new architectural and structural solutions.
PL
Współczesne tendencje podziału powierzchni strukturalnych stosowanych w formach architektonicznych odnoszą się do poznanych zasad matematyczno-geometrycznych, będących uproszczonym zapisem otaczającego Nas świata przyrody. W dyskretyzacji krzywoliniowych form architektonicznych istotną rolę odgrywa tesselacja polegająca na wypełnianiu powierzchni lub przestrzeni powtarzającym się motywem geometrycznym. W procesie wyznaczania podziału dla nieregularnej i złożonej geometrycznie powierzchni coraz częściej zamiast tesselacji poligonalnych wykorzystuje się tesselacje aperiodyczne, których charakterystyczna budowa fraktalna jest bliższa technologii Natury i może prowadzić do bardziej efektywnych rozwiązań inżynierskich. Ciekawy kierunek w rozwoju współczesnej architektury to inspiracje bioniką, wyrażające się m.in. w naśladowaniu biologicznych procesów rozwoju i budowy struktur organicznych. Celem takich działań jest poszukiwanie oryginalnych form, których logika kształtowania ukierunkowana jest szczególnie na efektywność w zużyciu materiału i energii. Rozwój narzędzi cyfrowych, w tym szczególnie algorytmizacja programów do modelowania 3D umożliwiły generowanie skomplikowanych układów, w tym także na drodze morfogenezy. W dobie generatywnych metod projektowania, wykorzystanie tesselacji aperiodycznych dostarcza nowych, twórczych narzędzi w kształtowaniu płaskich i przestrzennych struktur prętowych. Takim przykładem zastosowania geometrii nieokresowych podziałów aperiodycznych w generatywnym modelowaniu jest Skrypt Danzer’a, pozwalający na projektowanie układów w oparciu o pozornie chaotyczną strukturę quasi-kryształu. Interesująca w tej metodzie jest charakterystyczna budowa elementu nieperiodycznego wynikająca z jego symetrii, a przejawiająca się w postaciach, strukturze oraz właściwościach fizycznych quasi-kryształów. W dobie powszechnej algorytmizacji narzędzi pracy architekta, wykorzystanie nieoczywistej, chaotycznej budowy struktur bionicznych stwarza nowe możliwości w interdyscyplinarnymi twórczym projektowaniu architektury. Cyfrowe narzędzia do modelowania struktur prętowych oraz generowanie podziałów powierzchni strukturalnych w oparciu o tesselacje aperiodyczne to także działania do poszukiwań synergicznych rozwiązań architektoniczno-konstrukcyjnych.
3
Content available remote Pictometry® - nowe zastosowanie zdjęć lotniczych
EN
This paper introduces Pictometry® as unique information system with its product and software which combines digital. color aerial imaging with a software program and providing a complete visual information system. Two perspectives of georeferenced images: high resolution oblique (at an angle view) and orthogonal, viewed from a different directions with build in location.s data and measuring software package obtain measurements. Pictometry® products consist of desktop viewing software and aerial images. The data can either be viewed through the freely available software called Electronic Field Study or through GIS software such as ESRI, MapInfo, Cadcorp, Geomedia etc using established plug ins. The product also allows any other GIS data such as Raster & vector maps, elevation data, and address or postcode layers to be overlaid in the images. The images provide a rich visual information source to support analysis, reporting and the georeferenced oblique imagery extends the benefits of traditional straight-down photography providing a unique perspective view of a locality, allowing users: m To view facades of a building, structure or feature, exposing blind spots, exits and entrances previously impossible to locate on straight-down photography. m The ability to measure the height, length & area of features directly from photography. Measurements can be made between real world objects rather than their graphic representation in a 3D model. m Improve the identification of hard to see assets and facilities (e.g. lamp-posts, telegraph poles, etc) which can be difficult to distinguish on traditional orthophotography. m View GIS data in 3D by draping it on oblique imagery, extending the traditional and more familiar 2D view afforded by most GIS applications. A system based on mapping combined with location enabled, high. resolution oblique aerial photos are much easier to work with and show a lot more information. It has proven to be beneficial to housing tax assessors & planners, engineers, public safety, police, homeland security, insurance, property and real estates. The Pictometry® libraries can be used to explore, analyze, investigate and compare information not usually available in vertical imagery. The libraries can also be used for police, fire fighters, and emergency response units for verification of the true situation of an area during bad weather conditions or darkness. Pictometry® has shown to save time and costs by reducing the need of site visits by showing the complete picture from the desk top. Distance, height and other measurement tools provide valuable information potentially ruling out the need for initial surveys and it is easy to use.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.