Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 101

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  terrestrial laser scanning
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
PL
Dokumentacja geoprzestrzenna wykonywana na podstawie wyników pomiarów geodezyjnych obejmuje przygotowanie numerycznych map sytuacyjno-wysokościowych w jednolitym układzie odniesień przestrzennych. Oprócz klasycznej treści na mapę zostają wkreślone lokalizacje poszczególnych obiektów i ich specyficznych zgrupowań, budynków, także w obrębie cmentarza oraz trwałych ogrodzeń. Integralną częścią mapy jest model ukształtowania terenu. Wykonanie mapy numerycznej terenu objętego ochroną jak i obszaru wokół pozwala na analizę przekształceń powierzchni i poszukiwania historycznych granic i pierwotnych lokalizacji elementów zagospodarowania. Inwentaryzacja terenu i obiektów zabytkowych może być wykonana m.in. techniką naziemnego skanowania laserowego 3D. W wyniku skanowania powstaje tzw. chmura punktów przedstawiająca geometrię obiektu. Każdy punkt chmury oprócz danych geometrycznych w postaci współrzędnych przestrzennych zawiera także dodatkową informację spektralną, której analizy pozwalają na określenie stanu technicznego powierzchni, jej zawilgoceń, zabrudzeń oraz pokrycia roślinnością. Na podstawie pozyskanych danych można wykonać szereg analiz geometrycznych oraz pozyskać szczegółowe dane dokumentacyjne, np. wysokości, szerokości, głębokości, nachylenia obiektów, kształtu i charakterystyki powierzchni w tym odwzorowanie zdobnictwa i inskrypcji. Naziemny skaning laserowy jest obecnie szeroko stosowany przez środowiska architektoniczne i archeologiczne. Technologia ta ma ogromny potencjał w dokumentacji zabytków, gdzie tak gęsty zestaw danych może zapewnić wgląd w naturę zjawisk erozyjnych, reologicznych, a także rejestrować skalę i postęp zniszczeń dóbr kultury.
EN
Geospatial documentation performed on the basis of the results of geodetic measurements includes the preparation of numerical situational and height maps in a uniform spatial reference system. In addition to the classic content, the locations of individual objects and their specific groupings, buildings, also within the cemetery, and permanent fences are marked on the map. An integral part of the map is the terrain model. The preparation of a numerical map of the protected area and the area around it allows for the analysis of surface transformations and the search for historical borders and original locations of development elements. An inventory of the area and historic buildings can be made, e.g. 3D terrestrial laser scanning technique. As a result of scanning, the so-called a point cloud representing the object's geometry. Each point of the cloud, in addition to geometric data in the form of spatial coordinates, also contains additional spectral information, the analysis of which allows to determine the technical condition of the surface, its moisture, dirt and vegetation cover. On the basis of the obtained data, a series of geometric analyzes can be performed and detailed documentation data can be obtained, e.g. height, width, depth, inclination of objects, shape and surface characteristics, including representation of ornamentation and inscriptions. Terrestrial laser scanning is now widely used by the architectural and archaeological communities. This technology has great potential in the documentation of monuments, where such a dense set of data can provide insight into the nature of erosive and rheological phenomena, as well as record the scale and progress of damage to cultural heritage.
2
Content available remote Error Analysis of Stonex X300 Laser Scanner Close-range Measurements
EN
This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close-ranging as well as measurements that were obtained from extreme incident angle signals. The measurements were processed using a statistical outlier removal (SOR) filter to reduce the noise impact toward a smoother data set. The geometric differences and the RMSE values in the 3D coordinate directions were computed and analyzed, which showed the potential of the Stonex X300 measurements in close-ranging following a careful statistical analysis. It was found that the error differences in the vertical direction had a consistent behavior when the range increased, whereas the errors in the horizontal direction varied. However, it is more common to produce errors in the vertical direction as compared to the horizontal one.
EN
Monitoring the technical condition of hydrotechnical facilities is crucial for ensuring their safe usage. This process typically involves tracking environmental variables (e.g., concrete damming levels, temperatures, piezometer readings) as well as geometric and physical variables (deformation, cracking, filtration, pore pressure, etc.), whose long-term trends provide valuable information for facility managers. Research on the methods of analyzing geodetic monitoring data (manual and automatic) and sensor data is vital for assessing the technical condition and safety of facilities, particularly when utilizing new measurement technologies. Emerging technologies for obtaining data on the changes in the surface of objects employ laser scanning techniques (such as LiDAR, Light Detection, and Ranging) from various heights: terrestrial, unmanned aerial vehicles (UAVs, drones), and satellites using sensors that record geospatial and multispectral data. This article introduces an algorithm to determine geometric change trends using terrestrial laser scanning data for both concrete and earth surfaces. In the consecutive steps of the algorithm, normal vectors were utilized to analyze changes, calculate local surface deflection angles, and determine object alterations. These normal vectors were derived by fitting local planes to the point cloud using the least squares method. In most applications, surface strain and deformation analyses based on laser scanning point clouds primarily involve direct comparisons using the Cloud to Cloud (C2C) method, resulting in complex, difficult-to-interpret deformation maps. In contrast, preliminary trend analysis using local normal vectors allows for rapid threat detection. This approach significantly reduces calculations, with detailed point cloud interpretation commencing only after detecting a change on the object indicated by normal vectors in the form of an increasing deflection trend. Referred to as the cluster algorithm by the authors of this paper, this method can be applied to monitor both concrete and earth objects, with examples of analyses for different object types presented in the article.
PL
Monitorowanie stanu technicznego obiektów hydrotechnicznych stanowi kluczowe zadanie dla zapewnienia bezpieczeństwa ich użytkowania. Obejmuje ono zwykle zmienne środowiskowe (np. poziom piętrzenie i temperaturę betonu, wskazania piezometrów) oraz zmienne geometryczne i fizyczne (odkształcenie, pękanie, filtracja, ciśnienie porowe itp.). Wyniki monitoringu mogą być prezentowane w postaci wieloletnich trendów tych zmiennych w czasie, dzięki czemu stanowią ważną informację dla zarządców obiektów. Badania nad metodami analizy danych z monitoringu geodezyjnego (manualnego i automatycznego) oraz danych z czujników są ważne w kontekście oceny stanu technicznego i bezpieczeństwa obiektów, szczególnie w przypadku danych rejestrowanych z wykorzystaniem nowych technologii pomiarowych. Nowymi technologiami pozyskiwania danych o zmianach powierzchni obiektów są techniki wykorzystujące skanowanie laserowe (LiDAR) z różnych pułapów: naziemne, z pokładów powietrznych statków bezzałogowych (UAV, dronów), satelitarne wykorzystujące sensory rejestrujące dane geoprzestrzenne i wielospektralne. W artykule zaprezentowano algorytm pozwalający na wyznaczanie trendu zmian geometrycznych w oparciu o dane z naziemnego skaningu laserowego zarówno dla powierzchni obiektów betonowych jak i ziemnych. W pracach nad opracowaniem kolejnych kroków postępowania wykorzystano wektory normalne do analizy występowania zmian oraz obliczenia lokalnych kątów nachylenia powierzchni i zmian obiektu. Wektory normalne uzyskiwano poprzez wpasowanie lokalnych płaszczyzna metodą najmniejszych kwadratów w chmurę punktów. W większości zastosowań analizy odkształceń i deformacji powierzchni wykonywane w oparciu o chmury punktów ze skanowania laserowego sprowadzają się do bezpośredniego porównywania metodą Cloud to Cloud (C2C) i generowania trudnych do interpretacji, rozległych map deformacji. Wstępna analiza trendu zachowania obiektu w oparciu o lokalne wektory normalne pozwala na szybkie wykrywanie ewentualnego zagrożenia. Dzięki temu ogranicza si ę znacząco ilość obliczeń, a w przypadku gdy obiekt nie wykazuje zmian, szczegółowe interpretacje chmur punktów rozpoczyna się dopiero, po wykryciu zmiany na obiekcie wskazanej przez wektory normalne w postaci narastającego trendu wychylenia. Takie podejście może być stosowane zarówno do monitorowania obiektów betonowych jak i ziemnych, przykłady analizy dla różnych typów obiektów zaprezentowano w artykule.
PL
Celem niniejszego artykułu jest zaprezentowanie możliwości zastosowania naziemnego skaningu laserowego (ang. TLS terrestrial laser scanning) w inwentaryzacji przestrzennej komór przepływowych hydrozespołów, jak również przedstawienie możliwości jakie stwarza wykorzystanie przestrzennego modelu 3D w analizach wykorzystujących zagadnienie inżynierii odwrotnej. W celu pozyskania informacji przestrzennej obiektu hydrotechnicznego wykorzystano technikę naziemnego skaningu laserowego. Pomiar przeprowadzono z zastosowaniem skanera fazowego średniego zasięgu firmy Z+F Imager 5006h oraz tachimetru Leica TCRP1201+. Przedmiotem pomiaru był zespół czterech komór przepływowych zespołów hydrotechnicznych (hydrozespołów) w Elektrowni Wodnej Dębe, opróżnionych z wody na czas skanowania. Gęstość chmur punktów podczas skanowania w komorach wlotowych oraz rurach ssawnych odpowiadała pojedynczym milimetrom. Pomiar współrzędnych (X,Y,Z) punktów odniesienia (nawiązania), niezbędnych do wykonania ostatecznej przestrzennej orientacji skanów, zrealizowano tachimetrem TCRP 1201+ z błędem średnim nie gorszym niż ±2 mm dla każdej współrzędnej. Maksymalna wartość odchyłki dostosowania dla orientacji wzajemnej poszczególnych skanów dla bardzo trudnych warunków jakie występowały w komorze dolnej zwanej rurą ssawną wyniosła 9,4 mm z błędem średnim ±8,5 mm oraz 4,5 mm z błędem średnim ±3,4 mm w komorze górnej. Dla orientacji zewnętrznej, do wspólnego lokalnego układu współrzędnych, uzyskano odpowiednio maksymalną odchyłkę dostosowania równą 13,4 mm z błędem średnim ±11,3 mm (w komorze dolnej) oraz 4,9 mm z błędem średnim ±6,3 mm (w komorze górnej). Pomimo utrudnień związanych z trudnymi warunkami pomiaru (wilgotność 100% i spływająca po ścianach woda) potwierdzono, że dane z naziemnego skaningu laserowego mogą stanowić kompleksowe źródło wiarygodnych danych o geometrii obiektu. Pozyskany materiał stanowi bazowy materiał do wykonywania analiz merytorycznych przez specjalistów z zakresu budownictwa wodnego i mechaniki budowli. Dane te pozwalają dokonywać oceny stabilności i bezpieczeństwa obiektu oraz prowadzić prace modernizacyjne.
EN
This paper aims to present the possibility of using terrestrial laser scanning (TLS) of medium range in the spatial inventory of hydropower flow chambers of the Kaplan's turbine units and present the opportunities created by using a 3D spatial model in the analysis using the issue of reverse engineering. To obtain spatial information of the hydrotechnical object, terrestrial laser scanning technique was used. The measurement was carried out using a mid-range phase scanner Z+F Imager 5006h and a total station Leica TCRP1201+. The measurement object was a set of four flow chambers of the Kaplan turbine units (hydrosets) at Dębe Hydroelectric Power Plant, emptied of water for the time of scanning. The density of point clouds during scanning in inlet chambers and suction pipes was assumed about 1 mm. The measurement of (X,Y,Z) coordinates of reference points (reference), necessary for the final spatial orientation of the scans, was made with a TCRP 1201+ total station with an average error of not worse than ±2 mm for each coordinate. The maximum value of the adjustment deviation for the mutual orientation of the individual scans for the very difficult conditions in the lower chamber called the suction pipe was 9.4 mm with a standard deviation of ±8.5 mm and 4.5 mm with a standard deviation of ±3.4 mm in the upper chamber. For the external orientation, to a common local coordinate system, a maximum adjustment deviation of 13.4 mm with a standard deviation of ±11.3 mm (in the lower chamber) and 4.9 mm with a standard deviation of ±6.3 mm (in the upper chamber) was obtained respectively. Despite the difficulties associated with the difficult measurement conditions (100% humidity and water running down the walls), it was confirmed that TLS could provide a comprehensive source of reliable data on the object's geometry. The material obtained provides a basis for factual analysis by hydraulic engineering and structural mechanics specialists. This data allows to assess the object's stability and safety and carry out modernisation works.
PL
Pomiary inwentaryzacyjne (architektoniczne, do celów projektowych i powykonawcze) realizowane są za pomocą pomiarów kątowo-liniowych, dalmierzy laserowych, naziemnych skanerów laserowych (TLS) lub ręcznych skanerów laserowych. Wykorzystanie skaningu laserowego w pracach inwetaryzacyjnych umożliwiło uzyskanie quasi-ciągłego modelu obiektu oraz przyspieszenie pomiaru bezpośrednio na obiekcie. Wykorzystanie nowoczesnej technologii pomiarowej powoduje wzrost kosztów wykonywanych prac. Alternatywą stanowiącą kompromis cenowy i dokładnościowy są rozwiązania typowo fotogrametryczne, wykorzystujące zdjęcia cyfrowe do tworzenia modeli obiektów w postaci chmur punktów. Firma Apple Inc. wyprodukowała pierwszy telefon komórkowy z innowacyjnymi rozwiązaniami w postaci wbudowanego czujnika głębokości opartego na detekcji światła i zasięgu (LiDAR), z nowoczesnym oprogramowaniem do przetwarzania zdjęć. Zastosowane przez Apple Inc. rozwiązanie pozwala na uzyskanie kolorowej chmury punktów w skali 1:1. W artykule zaprezentowano podstawowe możliwości techniczne iPhone 13 Pro Lidar w kontekście typowych zadań z zakresu inwentaryzacji obiektów budowlanych.
EN
Inventory measurements (architectural, as-built) carried out using angular-line measurements, laser rangefinders, terrestrial laser scanners (TLS) or handheld laser scanners. The use of laser scanning in the inventory works allowed to obtain a quasi-continuous model and accelerate the measurement directly of the object. The use of modern measuring technology increases the costs of the works performed. An alternative that constitutes a compromise in terms of price and accuracy are typically photogrammetric solutions that use digital photos to create a model of the object in the form of a point cloud. Apple Inc. produced the first mobile phone with innovative solutions in the form of a built-in depth sensor based on light and range detection (LiDAR) and modern photo processing software. Applied by Apple Inc. the solution allows to obtain a colored point cloud in a 1:1 scale. The article presents the basic technical capabilities of the iPhone 13 Pro Lidar in the context of typical tasks in the field of building inventory.
EN
A series of terrestrial laser scanner measurements were made at selected sites of the Rudna mine. Using the method of differential images, the applicability of scanning was demonstrated for the recognition of the deformations taking place and the destruction of post-mining voids in the rock mass. At the same time, the usefulness of the technique used for the documentation of tectonic phenomena, practically invisible with classical methods of geological documentation, was demonstrated. The structure discovered by the authors, tectonic elongated-helicoidal asymmetric gouge (TEHAG), documents the process of horizontal and parallel to layering tectonic dislocations of rocks.
EN
Building information modeling (BIM) data for existing buildings based on scans and point clouds acquired from terrestrial laser scanning (TLS) is the basis of the Scan-to-BIM methodology and is becoming common practice. However, work on the accuracy of the resulting model is still desired. The article discusses the possibility of developing a BIM model of a historical building, based on data obtained by terrestrial laser scanning. The subject of the study was the church in Posada Rybotycka (Poland). The mapping reliability studies included PointCab and ReCap point cloud processing, 3D modeling of the object using Revit software, and analysis of the accuracy of distance measurements made by TLS with data obtained from measurements made with traditional methods: total station and laser rangefinder. Based on the conducted research, the possibility of using the BIM with TLS data in the process of reconstructing the geometry of a historic building was evaluated. The results of the study showed that the convergence of the 3D model geometry with the actual course of the structure depends on the development methodology, i.e. the accuracy of 3D data acquisition, the registration process, the filtering procedure, or the parametric structural modeling method used.
EN
Using a hyperboloidal cooling tower undergoing repair as an example, the paper examines the possibility of using a laser beam reflectance intensity value for the automated detection of perforations in cooling tower shells and the identification of material changes characteristic of the renovated sections of reinforced concrete structures. Due to the specific geometry of the analysed object, the practical application of the value of the fourth coordinate was preceded by its a priori modification. The applied correction solution made it possible to effectively eliminate the influence of the measurement geometry, adjusting the intensity values to correspond to the properties of the scanned surface. In the usability analyses of the corrected radiometric data, the author’s approach to eliminating information loss was applied, assuming the use of the fourth coordinate values as scalar fields. The proposed methodology was verified by comparing the obtained results with those of the commonly used unsupervised classification. The agreement, based on the similarity of the structures, between the results of the image classification and the areas extracted through the segmentation of the scalar fields, representing the corrected values of the laser beam reflectance intensity, confirmed the reliability of the proposed solutions. The usefulness of the radiometric data in 3D space was confirmed by comparing the obtained results with the analyses of the local surface curvature determined by the point cloud based on principal component analysis. Thanks to the segmentation of the scalar fields, the detection of rising damp and corrosion leaks, consistent with the results of the surface condition assessment based on the local curvature analysis, made it possible to specify the degree of degradation of the hyperboloid shell according to a seven-point scale that is consistent with the industry requirements. The values of the fourth coordinate also allowed the identification of material changes caused by the repair, and their comparison with the shell damage contours extracted from the local curvature analysis made it possible to verify the amount of repair mortar used and to assess the validity of the work carried out.
PL
W artykule, na przykładzie poddawanej naprawie hiperboloidalnej chłodni kominowej, zweryfikowano możliwość wykorzystania wartości intensywności odbicia wiązki lasera do zautomatyzowanej detekcji perforacji powłoki chłodni oraz identyfikacji zmian materiałowych, charakterystycznych dla wyremontowanych fragmentów żelbetowej budowli. Z uwagi na specyficzną geometrię analizowanego obiektu, praktyczną aplikację wartości czwartej współrzędnej poprzedzono jej aprioryczną modyfikacją. Zastosowane rozwiązanie korekcyjne umożliwiło skuteczną eliminację wpływu geometrii pomiaru, sprowadzając wartości intensywności do postaci odpowiadającej właściwościom skanowanej powierzchni. W analizach użyteczności skorygowanych danych radiometrycznych wykorzystano autorskie podejście eliminujące straty informacyjne, zakładające wykorzystanie wartości czwartej współrzędnej jako pól skalarnych. Weryfikację zaproponowanej metodyki zapewniło porównanie uzyskanych wyników z rezultatami stosowanej powszechnie klasyfikacji nienadzorowanej. Ustalona na podstawie podobieństwa struktur zgodność pomiędzy wynikami klasyfikacji obrazów i obszarami wyekstrahowanymi w oparciu o segmentacje pól skalarnych, stanowiących skorygowane wartości intensywności odbicia wiązki lasera, potwierdziła wiarygodność zaproponowanych rozwiązań. Przydatność danych radiometrycznych w przestrzeni 3D potwierdzono zestawiając uzyskane wyniki z rezultatami analiz lokalnej krzywizny powierzchni, wyznaczanej z chmury punktów na podstawie analizy głównych składowych. Bazująca na segmentacji pól skalarnych detekcja zawilgoceń i wycieków korozyjnych, integralna z wynikami oceny stanu powierzchni opartej na analizie lokalnej krzywizny, umożliwiła konkretyzację stopnia degradacji hiperboloidalnej powłoki, według podyktowanej wymogami branżowymi siedmiostopniowej skali. Wartości czwartej współrzędnej pozwoliły również na identyfikację będących wynikiem remontu zmian materiałowych, a ich zestawienie z wyekstrahowanymi na podstawie analizy lokalnej krzywizny konturami uszkodzeń powłoki, umożliwiły weryfikację ilości wykorzystanej zaprawy naprawczej i ocenę zasadności wykonanych prac.
EN
The idea of assessing the surface corrosion of a steel railway bridge evolved as a response to an industry need for fast and non-manual confirmation of the progress of surface deterioration of monochromatic bridges. Terrestrial laser scanning is a technology for remote acquisition of information about the geometry of an object in the form of a point cloud, in which the coordinates (X, Y, Z) are recorded for each point and information on the intensity of the reflected beam is also recorded. In addition to the accurate representation of changes in the geometry of an ageing object, represented by the three-dimensional coordinates of the bridge, terrestrial laser scanning provided information about the surface properties of the bridge object in the form of the intensity of the reflection beam. Imaging algorithms enable it to indicate the homogeneous surfaces of the bridge and, therefore, suggest whether they are subject to corrosion processes or not. The intensity of the object’s point cloud, through the use of unsupervised classification tools, ensures the detection of changes in the surface properties of a monochromatic railway bridge. The classification method for the unsupervised raster representation of grey-scale reflectance intensity (generated from TLS data), as in classical remote sensing, provides classes of pixels with similar reflectance properties. The concept for the scientific research on the detection of the corrosion progress of a steel railway bridge using an active short-range remote sensing system involved the development of algorithmic advances that allow the comparison of periodic raster classifications from a point cloud. Thanks to the differentiation of the imaging, it is possible to determine changes in the location and extent of corrosion, the rate of its progress in ageing steel objects, the detection of cracks and fissures as structural hotspots, indicating the filling capacity of the object, as provided for in the technical documentation. The study provided an empirical basis for research on automatic corrosion detection.
PL
Koncepcja oceny korozji powierzchniowej stalowego mostu kolejowego zrodziła się jako odpowiedź na potrzebę branżową szybkiej oraz niemanualnej konstatacji postępów zniszczenia powierzchniowego mostów monochromatycznych. Naziemny skaning laserowy to technologia zdalnego pozyskiwania informacji o geometrii obiektu w postaci chmury punktów, której dla każdego punktu zapisane są współrzędne (X, Y, Z) oraz zarejestrowana jest również informacja o intensywności wiązki odbicia. Poza wiernym odzwierciedleniem zmian geometrii obiektu wiekowego, reprezentowanym przez współrzędne trójwymiarowe mostu, naziemny skaning laserowy dostarczał informacji o właściwościach powierzchni obiektu mostowego w postaci intensywności wiązki odbicia. Może ona, poprzez algorytmy zobrazowania, wskazać może powierzchnie jednorodne mostu, a zatem poddane bądź nie procesom korozji. Intensywność chmury punktów obiektu, poprzez zastosowanie narzędzi klasyfikacji nienadzorowanej zapewnia detekcję zmian właściwości powierzchni mono-barwnego mostu kolejowego. Metodą klasyfikacji nienadzorowanej rastrowej reprezentacji intensywności odbicia w skali szarości (wygenerowanej z danych TLS), podobnie jak w przypadku klasycznej teledetekcji, uzyskuje się klasy pikseli o podobnych właściwościach odbicia promieniowania. Koncepcja badań naukowych nad detekcją postępu korozji stalowego mostu kolejowego z zastosowaniem aktywnego systemu teledetekcji bliskiego zasięgu zakładała opracowanie postępów algorytmicznych pozwalających na porównywanie okresowych klasyfikacji rastrów z chmury punktów. Dzięki różnicowaniu zobrazowań, możliwe jest określenie zmian lokalizacji i zasięgu korozji, tempa ich postępowania w przypadku stalowych obiektów wiekowych, detekcji rys i spękań, jako punktów newralgicznych konstrukcji, świadczących o wypełniających się zdolnościach eksploatacyjnych obiektu, przewidzianych w dokumentacji technicznej. Przeprowadzone opracowanie wskazało empiryczne podstawy do prowadzenia badań nad automatyczną detekcją korozji.
EN
Currently, the modelling of historic buildings is most often performed on the basis of data obtained by terrestrial laser scanning. It ensures both the speed of information acquisition and the high accuracy of the final elaboration. However, there are situations in which the terrain layout or the structure of the building limits the possibility of obtaining full information on its shape. In such situations, the solution is to integrate data from various measurement devices. In the case of creating a full 3D model of large buildings, one of the ways to supplement the data, especially the roof of the building, is to use data from airborne laser scanning. The research used the integration of airborne laser scanning data with data recorded with the Leica ScanStation P40 terrestrial laser scanner. Combined point clouds were used for 3D modelling of two different historic buildings in Krakow. Modelling was performed with the Bentley CAD software and in Leica Cyclon 3DR and 3DReshaper. The accuracy of data integration was determined and the advantages and disadvantages of using the above-mentioned software for 3D modelling of architectural objects were shown. The result of the study is a 3D model of St. Florian’s Gate and the Palace of Art in Krakow.
EN
Although laser scanning ideas and hardware solutions are well-known to experts in the field, there is still a large area for optimization. Especially, if long-range and high-resolution scanning is considered, the smallest defects in optical quality should be perfected. On the other hand, the simplicity, reliability, and finally the cost of the solution plays an important role, too. In this paper, a very simple but efficient method of optical correction is presented. It is dedicated to laser scanners operating from inside cylindrical glass domes. Such covers normally introduce aberrations into both the laser beam and receiving optics. If these effects are uncorrected, the laser scanner performance is degraded both in terms of angular resolution and maximum range of operation. It may not be critical for short-range scanning applications; however, if more challenging concepts are considered, this issue becomes crucial. The proposed method does not require sophisticated optical solutions based on aspheric or freeform components, which are frequently used for similar purposes in imaging-through-dome correction but is based on a simple cylindrical refractive correction plate.
EN
Advancements in digitizing technologies in recent years have enabled the creation of precise three-dimensional models using specialized equipment such as terrestrial laser scanners. Unfortunately, working with a device placed on the ground surface makes it impossible to directly measure roof structures, building vertices and hard-to-reach areas. However, unmanned aerial vehicles equipped with high-resolution cameras and a precise control system that allows maneuvers in the aforementioned places have a chance in this field. This article presents the complete process of digital 3D modeling of the town hall building in Zamość, using a combination of photogrammetry and laser scanning, along with geodetic measurement techniques. The study covers the planning stage, the field stage, and ends with accuracy analyses. Finally, the potential applications of the aforementioned object are discussed. The research identified several challenges during the project, including the need for meticulous planning to ensure optimal data acquisition, dealing with limitations of equipment mobility, and addressing data quality issues such as image blurriness and exposure variations. However, through careful calibration, data filtering, and quality assessment, these challenges were successfully mitigated. The study demonstrated the potential of advanced geodetic techniques in accurately digitizing complex architectural structures with rich historical significance. The detailed 3D model of the Zamość town hall serves as a valuable resource for further research, preservation efforts, and heritage documentation.
PL
Wykonanie prawidłowej inwentaryzacji materiałów w obiektach budowlanych przeznaczonych do rozbiórki, uwzględniającej łatwość ich odzysku, jest procesem czasochłonnym i kosztownym. W artykule wykazano, że proces ten można usprawnić, wykorzystując technologię skanowania laserowego 3D, która z powodzeniem jest stosowana przy sporządzaniu dokumentacji inwentaryzacyjnej obiektów zabytkowych i w wielu innych dziedzinach gospodarki. Technologia skaningu laserowego 3D może być w przyszłości stosowana do pomiaru kubatury obiektów budowlanych oraz identyfikacji podstawnych materiałów rozbiórkowych przeznaczonych do recyklingu.
EN
Performing a proper inventory of materials in construction objects intended for demolition, taking into account the ease of their recovery, is a time-consuming and costly process. This paper shows that this process can be improved by using 3D laser scanning technology, which is successfully used in the preparation of inventory documentation of historic buildings and in many other areas of the economy. The 3D laser scanning technology can be used in the future to measure the volume (cubic capacity) of building objects and to identify basic demolition materials for recycling.
EN
Periodic inventory and check surveys of the surfaces in engineering structures using terrestrial laser scanning require performing scans from many locations. The survey should be planned so as to obtain full coverage of the measured surface with a point cloud of appropriate density. Due to a variety of terrain obstacles in the close vicinity of the surveyed structure, structural and technical elements, as well as machinery and construction equipment (whose removal is impossible e.g. because of their role in the building and protection of the structure), it is often necessary to combine scans acquired from locations having different measurement geometry of the scene and performed in different lighting conditions. This makes it necessary to fill in blank spots with data of different spectral and geometric quality. This paper presents selected aspects of data harmonization in terrestrial laser scanning. The laser beam incidence angle and the scanning distance are assumed as parameters affecting the quality of the data. Based on the assumed minimum parameters for spectral data, an example of a harmonizing function for the concrete surface of a slurry wall was determined, and the methodology for determining its parameters was described. The presented solution for spectral data harmonization is based on the selection of reference fields representative of a given surface, and their classification with respect to selected geometric parameters of the registered point cloud. For geometric data, possible solutions to the harmonization problem have been analyzed, and criteria for point cloud reduction have been defined in order to obtain qualitatively consistent data. The presented results show that harmonization of point clouds obtained from different stations is necessary before their registration, in order to increase the reliability of analyses performed on the basis of check survey results in the assessment of the technical condition of a surface, its deformation, cracks and scratches.
PL
Okresowe pomiary inwentaryzacyjne i kontrolne powierzchni obiektów inżynierskich metodą naziemnego skaningu laserowego wymagają wykonania skanowania z wielu stanowisk instrumentu. Pomiar obiektu powinien być tak zaplanowany, aby uzyskać pełne pokrycie mierzonej powierzchni chmurą punktów o odpowiedniej gęstości. Ze względu na znajdujące się w bliskim otoczeniu mierzonego obiektu przeszkody terenowe, elementy konstrukcyjne i techniczne a także maszyny i urządzenia budowlane, których usunięcie na czas wykonywania pomiaru jest niemożliwe np. służące realizacji i zabezpieczeniu obiektu często niezbędne jest łączenie skanów pozyskanych ze stanowisk o różnej geometrii sceny pomiarowej i wykonanych w różnych warunkach oświetlenia. Skutkuje to koniecznością uzupełniania martwych (pustych) pól danymi o różnej jakości spektralnej i geometrycznej. W artykule zaprezentowano wybrane aspekty harmonizacji danych z naziemnego skaningu laserowego. Jako parametry wpływające na jakość danych przyjęto kąt padania wiązki laserowej oraz odległość skanowania. W oparciu o przyjęte minimalne parametry dla danych spektralnych wyznaczono przykładową funkcję harmonizującą dla betonowej powierzchni ściany szczelinowej oraz opisano metodykę wyznaczania jej parametrów. Prezentowane rozwiązanie dla harmonizacji danych spektralnych opiera się na wyborze reprezentatywnych dla danej powierzchni pól referencyjnych i ich klasyfikacji w odniesieniu do wybranych parametrów geometrycznych zarejestrowanej chmury punktów. Dla danych geometrycznych przeanalizowano możliwe rozwiązania problemu harmonizacji oraz określono kryteria ograniczania chmur punktów w celu uzyskiwania spójnych jakościowo danych. Na podstawie zaprezentowanych wyników wykazano, że harmonizacja pojedynczych chmur punktów pozyskanych z różnych stanowisk jest konieczna przed ich wspólną rejestracją (register points clouds) w celu podniesienia wiarygodności analiz wykonywanych na podstawie wyników pomiarów kontrolnych do oceny stanu technicznego powierzchni, jej deformacji oraz spękań i rys.
EN
Currently, the possibilities offered by measurement techniques allow development of both cities in the form of 3D models as well as models of small and large architecture objects. Depending on the needs, the scale of an examined object or the intended use of the final product, geodesy finds ready-made measurement methods. If one wants to work out a 3D model of a building object in detail, the most accurate way is to use laser scanning technology. However, there are situations in which limitations resulting from the terrain layout or the structure of the building preclude to obtain full information about its shape. In such situations, the solution is to integrate data from various measurement devices. If creating a full 3D model of large buildings, the best choice to complete data, especially the roof of the object, is to use an unmanned aerial platform, because the resolution of images made on a low altitude is good enough to obtain a satisfactory effect in the form of a point cloud. The research used integration of data obtained at low altitude from two unmanned aerial vehicles, Fly-Tech DJI S1000 and DJI Phantom 3 Advanced - using various types of missions - with data recorded with the Leica ScanStation P40 terrestrial laser scanner. The data was integrated by giving them a common coordinate system - in this case the 2000 system, for the grid points measured in the field with the GNSS technique, and the use of Cyclone, Metashape and Pix4D software for this purpose. Combined point clouds were used for 3D modelling of the sacred object with Bentley CAD software. The accuracy with which data integration was performed and errors resulting from the use of various measurement techniques were determined. The result of the study is a 3D model of the Church of Our Lady of Consolation, located in Krakow at the Sportowe estate.
PL
Obecnie możliwości jakie dają techniki pomiarowe, pozwalają na opracowywanie zarówno miast w postaci modeli 3D, jak i modeli obiektów małej i dużej architektury. W zależności od potrzeb, skali badanego obiektu, czy przeznaczenia finalnego produktu, geodezja znajduje gotowe metody pomiarowe. Chcąc szczegółowo opracować model 3D obiektu budowlanego, najdokładniejszym sposobem okazuje się wykorzystanie technologii skaningu laserowego. Jednak są sytuacje, w których ograniczenia wynikające z układu terenowego lub konstrukcji budynku, nie pozwalają na pozyskanie pełnej informacji o jego bryle. W takich sytuacjach rozwiązaniem jest zintegrowanie danych z różnych sprzętów pomiarowych. W przypadku tworzenia pełnego modelu 3D dużych obiektów budowlanych, najlepszym wyborem do uzupełnienia danych, szczególnie dachu obiektu, jest użycie bezzałogowej platformy latającej, gdyż rozdzielczość zobrazowań wykonanych na niskim pułapie jest na tyle dobra, że pozwala otrzymać zadowalający efekt w postaci chmury punktów. W badaniach wykorzystano integrację danych pozyskanych z niskiego pułapu z dwóch bezzałogowych platform latających, Fly-Tech DJI S1000 i DJI Phantom 3 Advanced - wykorzystując różnego rodzaju misje - z danymi zarejestrowanymi naziemnym skanerem laserowym Leica ScanStation P40. Zintegrowanie danych obyło się poprzez nadanie im wspólnego układu współrzędnych - w tym przypadku układu 2000, dla pomierzonych w terenie techniką GNSS punktów osnowy oraz wykorzystanie do tego celu oprogramowania Cyclone, Metashape i Pix4D. Połączone chmury punktów wykorzystano na cele modelowania 3D obiektu sakralnego w oprogramowaniu CAD firmy Bentley. Określono dokładność, z jaką przebiegła integracja danych oraz błędy wynikające z zastosowania różnych technik pomiarowych. Efektem opracowania jest model 3D Kościoła Matki Bożej Pocieszenia, znajdującego się w Krakowie na osiedlu Sportowym.
16
Content available 3D modelling with the use of photogrammetric methods
EN
Extremely intensive development of technology has resulted in many innovations. There are new methods of acquiring spatial data, such as laser scanning, unmanned aerial vehicles or digital non-metric cameras, which are the subject of this study. Integration of this data has become a new tool that has expanded existing measurement capabilities, finding applications in 3D modelling, archaeology and monument conservation. Owing to scanning, we can get the coordinates of almost every point of the scanned surface, obtaining full and detailed information about the object dimensions. The level of technical advancement of digital cameras allows them to be successfully used in short-range photogrammetry [27], and recently also in low-altitude aerial photogrammetry (unmanned aerial vehicles). Two different test objects were selected to achieve the intended purpose. The monument located on the 14-meter-high top of the Wanda Mound was adopted as the first object. It consists of a simple rectangular plinth made of brown marble. On its top there is a figure of an eagle with a crown of white marble. On the west wall of the plinth there is an inscription “Wanda” and a drawing showing a sword crossed with a distaff. The following features supported the choice of the monument: interesting shape of the object, which includes both simple geometric forms with large and flat surfaces (plinth), and more detailed surfaces (figure of an eagle); detailed texture of the object (complicated marble veins, wing details). The second object under study was The Helena Modrzejewska National Stary Theatre. The building was rebuilt in the style of Viennese Art Nouveau, so that it fully incorporates into the rest of buildings. Measurements included data obtained from a non-metric camera, Leica ScanStation scanner and DJI S 1000 multi-rotor.
PL
Niezwykle intensywny rozwój technologii od początku obecnego stulecia, zaowocował wieloma innowacjami, również w dziedzinie geodezji i kartografii, a w szczególności w zakresie fotogrametrii i teledetekcji. Oprócz ewolucji znanych już form pomiarów jak przejście ze zobrazowań analogowych na cyfrowe, pojawiły się też nowe metody pozyskiwania danych przestrzennych jak skaning laserowy, bezzałogowe statki powietrzne czy cyfrowe kamery niemetryczne, będące przedmiotem niniejszego opracowania. Integracja tych danych stała się nowym narzędziem, które rozszerzyło dotychczasowe możliwości pomiarowe, jak również znalazło zastosowanie poza branżą geodezyjną, na przykład w modelowaniu 3D, archeologii czy konserwacji zabytków. Dzięki skaningowi otrzymujemy współrzędne niemal każdego punktu skanowanej powierzchni w dowolnym miejscu, nawet już po zakończeniu pomiaru i opuszczeniu obiektu. Otrzymujemy zatem pełną i szczegółową informację o wymiarach obiektu, o znajdującej się wewnątrz infrastrukturze niekiedy trudno dostępnej bądź skomplikowanej. Poziom zaawansowania technicznego aparatów cyfrowych pozwala już od kilkunastu lat na stosowanie ich z powodzeniem w fotogrametrii bliskiego zasięgu [27], a od niedawna także i w fotogrametrii lotniczej niskiego pułapu (bezzałogowe statki powietrzne). Bezzałogowe statki powietrzne okazują się świetnym narzędziem wspomagającym proces zbierania danych o wysokorozdzielczych metrycznych zdjęciach elewacji budynków. Do zrealizowania zamierzonego celu wybrano 2 różne obiekty testowe.
EN
The Tunnel Contour Quality Index (TCI) is an index established by Kim and Bruland for an effective management of a tunnel contour quality. It is estimated on a basis of measurements of two contour profiles within a single blasting round, using a laser profiler. However, the representativeness of measurement results obtained that way for the assessment of a contour quality of the entire blasting round is disputable. Terrestrial laser scanning (TLS) technology, combined with available numerical surface modeling tools, enables development of three-dimensional models of a monitored surface. The article reports results of TCI calculations based on TLS data. The presented TLS technique is based not only on selected cross-sections of the tunnel contour but also on the description of the morphology of the tunnel contour surface. The case study concerns measurements of the "Mały Luboń" tunnel niche, located in Naprawa, Poland. The TCI values for three blasting rounds were determined in accordance with Kim and Bruland’s guidelines and were compared to TCI values determined with the proposed TLS technique. On a basis of this comparison, it can be concluded that the results obtained with the TLS technique are more reliable and representative for description of the contour quality of the entire blasting round than results obtained with the laser profiling technique.
EN
Precipitation, especially with a high intensity, affects the condition of mining waste dumps. The article presents the results of research aimed at determining the impact of rain on water erosion on the slopes of a coal waste dump and its thermal state. Preliminary tests of the condition of two slopes of the coal waste dump in Libiąż (Poland) undertaken in the frameworks of the TEXMIN project was carried out using modern geodesy techniques (low-ceiling photogrammetry and TLS terrestrial laser scanning). The current geometry of the slope surface was faithfully reproduced in the form of a cloud of points with known coordinates x, y, z. The thermal state within the analyzed slopes of the dump was also assessed. Based on thermography studies and measurements of temperature and gas concentrations inside the object, two zones of thermal activity were located on one of the examined slopes. The test results constitute the initial state against which the results of further tests will be compared. This will allow to determine the influence of precipitation on the amount of water erosion and the thermal state of the dump in a specific time period.
EN
In the present day, we are witnessing the dynamic development of our country. We observe a growing number of new construction investments, which are designed to meet the needs of the market. Streets are being widened to cope with the growing number of vehicles, modern office buildings and skyscrapers are being built in the largest Polish cities, which at the same time have valuable architectural objects in their oldest districts. Such objects, due to their age, are susceptible to damage, and thus to the threat that their value will be lost. Such damage may occur in the course of construction works that destabilize the soil structure, which may lead to damage to the building’s foundations and, as a result, harm or destroy the most important structural elements of the monument. Another important factor is the operation of industrial plants that emit harmful substances, which have a negative impact on façades and other external elements, such as, for example, relief sculptures. It may be difficult and complicated to remove the effects of the risks described above if the documentation necessary to carry out protection or renovation works is incomplete or insufficiently detailed. A separate issue worth discussing are architectural objects made of perishable materials such as wood [Bernat et al. 2014]. There are many objects of wooden architecture in Poland, such as: Catholic and Orthodox churches, open-air museums, and other relics of bygone eras. Apart from the obvious threat of fire and its negative effects, one can also mention the negative impact of precipitation, whether in the form of rain causing the wood to soak and, as a result, to rot, or the risk of damaging the foundations during a flood. The listed threats have a direct and indirect impact on the structure of such historical buildings. Therefore, it is important to take care of their detailed survey, with the view to preserving and maintaining them. It is also worth mentioning a large number of castles located in our country. The condition of their structures is very diverse and ranges from newly restored buildings to those with only foundations left. In all cases, it is important to obtain accurate plans and models of these building objects. This will serve to preserve their dimensions and shapes. Such data can be used to develop documentation necessary to carry out reconstruction or renovation in order to return the building to its former glory, and thus obtain another object worth seeing.
PL
W obecnych czasach jesteśmy świadkami dynamicznego rozwoju naszego kraju. Obserwujemy, jak powstają coraz to nowe inwestycje budowlane mające na celu zaspokojenie potrzeb rynku. Przebudowywane są ulice by sprostać rosnącej ilości samochodów na drogach, powstają nowoczesne biurowce i drapacze chmur w największych miastach Polski, które to jednocześnie posiadają cenne obiekty architektury w swoich najstarszych dzielnicach. Obiekty takie z racji swojego wieku są podatne na uszkodzenia, a co za tym idzie na utratę ich walorów. Uszkodzenia takie mogą powstawać na drodze prowadzonych prac budowlanych destabilizujących strukturę gruntu, co może prowadzić do naruszenia fundamentów budowli i w efekcie spowodować uszkodzenia bądź zniszczenia najważniejszych elementów konstrukcyjnych zabytku. Istotnym czynnikiem jest też działalności zakładów przemysłowych emitujących szkodliwe substancje mające negatywny wpływ na elewacje i inne elementy zewnętrzne takie jak np. płaskorzeźby. Skutki opisanych wyżej zagrożeń są skomplikowane do usunięcia w przypadku, gdy dokumentacja niezbędna do przeprowadzenia prac zabezpieczających bądź renowacyjnych jest niekompletna lub wykonana niewystarczająco szczegółowo. Osobną kwestią jaką warto poruszyć są obiekty architektoniczne wykonane z nietrwałych materiałów takich jak np. drewno [Bernat M., et al., 2014]. Na terenie Polski zlokalizowane jest wiele obiektów architektury drewnianej takich jak: kościoły, cerkwie, skanseny i inne relikty minionych epok. Pomijając oczywiste zagrożenie jakim jest pożar oraz jego negatywne skutki, można wymienić jeszcze niekorzystny wpływ opadów atmosferycznych, czy to w postaci deszczu powodującego namakanie drewna, a w rezultacie jego butwienie czy też zagrożenie podmycia fundamentów podczas powodzi. Wymienione zagrożenia mają bezpośredni jak i pośredni wpływ na konstrukcję takich zabytków. Istotne jest więc by zadbać o ich szczegółową inwentaryzację w celu ich zachowania. Wartą poruszenia kwestią jest także spora ilości zamków zlokalizowanych na terenie naszego kraju. Stan ich konstrukcji jest bardzo zróżnicowany i oscyluje od dopiero, co odrestaurowanych obiektów do takich po których zostały już same fundamenty. We wszystkich przypadkach istotnym zagadnieniem jest pozyskanie dokładnych planów i modeli tych obiektów. Ma to na celu zachowanie ich wymiarów i kształtów. Dane takie mogą posłużyć opracowaniu dokumentacji niezbędnej do przeprowadzenia odbudowy bądź renowacji mające na celu powrót obiektu do dawnej świetności, a tym samym pozyskaniu kolejnego obiektu wartego zobaczenia.
EN
Mapping glass objects in 3D space has long raised doubts as to the possibility of obtaining data, and as to the accuracy of that data. The basics of terrestrial laser scanning technology and the principles of the physics of light propagation in the environment of transparent and reflective surfaces, as a rule, contradict the technological possibility of a faithful mapping thereof. Although Building Information Modelling (BIM) of existing objects based on data from terrestrial laser scanning is an increasingly common practice, it is recognized, nevertheless, that the accuracy of the model is primarily reflected in the accuracy of the point cloud obtained as a result of scanning. The article discusses the possibilities of developing a BIM model of an object made in glass technology, based on data obtained with the method of terrestrial laser scanning. The subject of the study was the glazed façade of the complex of buildings belonging to the University of Agriculture in Krakow. The study on the fidelity of mapping glazed surfaces included the acquisition and processing of the point cloud, 3D modelling of the object using the Revit software, and the analysis of the accuracy of mapping the existing status in comparison with architectural design and construction documentation. Based on the research, the possibility of using the BIM process was assessed using TLS data in the process of recreating the geometry of an object made in glass technology. The results of the study showed a significant convergence of the façade model geometry with the actual course of the structure, which, however, can be attributed to the development methodology, i.e. the accuracy of 3D data acquisition, the registration process, the filtration procedure, the method of parametric modelling of the façade structure itself, and ultimately fitting three-layer glazing into the model of that structure.
PL
Odwzorowanie obiektów szklanych w przestrzeni 3D od lat budzi wątpliwości w zakresie możliwości pozyskania danych oraz ich dokładności. Podstawy technologii naziemnego skaningu laserowego oraz zasady fizyki rozchodzenia się światła w środowisku powierzchni transparentnych i refleksyjnych co do zasady przeczą możliwością technologicznym ich wiernego odwzorowania. Modelowanie BIM obiektów istniejących w oparciu o dane z naziemnego skanowania laserowego to coraz powszechniejsza praktyka, jednak nadal uznaje się, że o dokładności modelu świadczy przede wszystkim dokładność pozyskanej w wyniku skanowania chmury punktów. W artykule omówiono możliwości opracowania modelu BIM obiektu wykonanego w technologii szklanej, na podstawie danych pozyskanych technologią naziemnego skaningu laserowego. Przedmiotem opracowania była przeszklona fasada kompleksu zabudowań Uniwersytetu Rolniczego w Krakowie. Badania wierności odwzorowania przeszkleń obejmowały pozyskanie i przetworzenie chmury punktów, modelowanie 3D obiektu w programie Revit oraz analizę dokładności odtworzenia stanu istniejącego w porównaniu z dokumentacją architektoniczno – budowlaną. W oparciu o przeprowadzone badanie dokonano oceny możliwości zastosowania procesu BIM przy wykorzystaniu danych TLS w procesie odtworzenia geometrii obiektu wykonanego w technologii szklanej. Rezultaty opracowania wykazały znaczą zbieżność geometrii modelu fasady z rzeczywistym przebiegiem konstrukcji, co jednak zawdzięczać można metodyce opracowania tj. dokładności pozyskania danych 3D, procesowi rejestracji, filtracji, metodzie modelowania parametrycznego samej konstrukcji fasady oraz finalne wpasowaniu w jej model trójwarstwowych szkleń.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.