Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  teoria funkcjonałów gęstości
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Modelling of porous metal-organic framework (MOF) materials used in catalysis
EN
This paper presents a review of modern modelling of porous materials such as metal-organic frameworks used in catalysis. The authors’ own research approach using the nano-design of metal-organic frameworks is included in this review.
PL
W niniejszym artykule przedstawiamy przegląd nowoczesnego modelowania materiałów porowatych, takich jak struktury metaloorganiczne, stosowanych w katalizie. Uwzględnione zostały również nasze własne prace badawcze wykorzystujące projektowanie struktur metaloorganicznych.
PL
Praca obejmuje zwarty przegląd podstaw teoretycznych i zastosowań metod badawczych o wysokim potencjale użycia w katalizie heterogenicznej. Autorzy przedstawili cztery techniki: rentgenowską dyfraktometrię proszkową (XRD), obliczenia DFT, transmisyjną mikroskopię elektronową (TEM) oraz elektronowy rezonans paramagnetyczny (EPR). Dyfraktometria rentgenowska pozwala, poprzez zbadanie uporządkowania dalekozasięgowego w objętości próbki, określić fazy krystaliczne obecne w próbce, wielkość domen dyfrakcyjnych oraz bardziej dokładnie przedstawić strukturę komórki elementarnej materiału katalitycznego. Metody obliczeniowe, bazujące na określonych założeniach teoretycznych, umożliwiają uzyskanie informacji niezbędnych do wyjaśnienia mechanizmów zachodzących reakcji, pozwalając w efekcie na zwiększenie dokładności przewidywanych wyników. Wymagają one jednak wcześniejszej weryfikacji zgodności modelu obliczeniowego z doświadczeniem. Transmisyjna mikroskopia elektronowa stanowi idealne narzędzie do analizy zarówno składu (techniki spektroskopowe: EDX, EELS), jak i struktury (w tym defektów) katalizatorów (techniki mikroskopowe: HR TEM, HR i HAADF STEM). Spektroskopia elektronowego rezonansu paramagnetycznego daje wgląd w najbliższe otoczenie koordynacyjne jonów paramagnetycznych oraz mechanizm reakcji katalitycznych. Komplementarne wykorzystanie wyników otrzymanych wymienionymi metodami pozwala uzyskać kompleksową wiedzę o uporządkowaniu blisko- i dalekozasięgowym katalizatora.
EN
The article covers a compact overview of the theoretical basics and usage of research methods with high potential for application in heterogeneous catalysis. The authors presented four techniques: X-ray powder diffraction (XRD), DFT calculations, transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR). X-ray diffraction allows by means of examination of the long-range arrangement in sample volume, to determine crystalline phases, size of the crystal domains and to obtain the structure of the primitive cell of the catalytic material. Computational methods give the information necessary to fully explain the mechanisms of reactions, with higher resolution than by any experimental method. They require though, previous verification of computed model systems. Transmission electron microscopy is an ideal tool for the analysis of both the composition (spectroscopic techniques: EDX, EELS) and structure (including defects) of catalysts (microscopic techniques: HR TEM, HR and HAADF STEM). Electron paramagnetic spectroscopy gives insight into the nearest coordination surroundings of the paramagnetic ions and into the mechanisms of catalytic reactions. Complementary usage of the outcomes from each method mentioned above gives the comprehensive knowledge of both short- and long-range order in catalytic material.
PL
Korzystając z wyników zaawansowanych teoretycznie obliczeń na gruncie teorii funkcjonałów gęstości DFT (density functional theory), przeanalizowano termodynamiczne aspekty procesu wewnątrzcząsteczkowej transestryfikacji 4-(4-hydroksyfenylo)-4(2-hydroksyfenylo)-pentanianu etylu. Okazało się, że równowaga procesu silnie zmienia się wraz ze zmianą temperatury reakcji. Polarność środowiska ma mniej istotny wpływ na równowagowy stopień konwersji.
EN
Enthalpy, entropy, free energy, equil. consts., and conversion degrees of the intramol. transesterification of the title compd. to resp. lactone in gas phase and in polar media at 0–100°C were calcd. from thermodynamic properties of the raw material and product by using a commonly used com. available algorithm. The reaction equil. const. and conversion degree increased strongly with the increasing temp. Polarity of the environment showed a less significant effect on the reaction equil. and conversion degree.
EN
Thirty five years after Hohenberg and Kohn discovered in 1964 that the electronic density r(r) can be used as the basic quantity in the rigorous formulation od the theory of electronic structure of matter, the modern density functional theory (DFT) has developed into an already mature discipline, which offers both attractive computational tools for applications in physics, chemistry and molecular biology, and a new conceptual framework for predicting and rationalizing preferences in chemical processes. Computational advances, originating from the other, almost as old historical development by Kohn and Sham (KS) in 1965, have demonstrated that the accuracy of the modern DFT software in the mostly ground-state applications has reached the level of the 3chemical accuracy 1, comparable to that offered by the sophisticated and prohibitively expensive traditional quantum chemistry methods, which explicitly determine the correlated N-electron wavefunction of a molecular system. The importance of these two branches of computational quantum chemical methods in modern chemistry has been recognized by the 1998 Nobel Prize for Chemistry [W. Kohn (density theory) and J.A. Pople (wavefunction theory)]. The Hohenberg-Kohn/Kohn-Sham theories have been generalized to thermal ensembles, multicomponent systems, spin and orbital paramagnetism, and superconductivity. The recent developments also cover the relativistic and excited-states theories, time dependent systems and the DFT for sybsystems, the latter being of paramount importance for the theory of chemical reactivity. The applications of DFT range from the ground-state properties of solids, through calculations on molecular systems of chemical/biological importance to high temperature plasmas. A combinations of DFT with molecular dynamics has prompted a spectacular progress in calculations on the ion dynamics in solids and the equilibrium structures of large molecular clusters with up to ~10(2) atoms. Very recently, progress has also been made in developing approaches behaving linearly with the number of electrons, which show promise of handling truly large systems consisting of ~10(3) atoms This spectacular success of the computational DFT is matched by its conceptual significance in chemistry. DFT gave a new impetus for developing novel, more reliable reactivity criteria and offered a new thermodynamical outlook on elementary chemical processes. It has soon been discovered that DFT provides the rigorous basis for defining many classical chemical concepts, which had originally been introduced on intuitive/phenomenological grounds, e.g., the electronegativity and hardness/softness characteristics of the electronic distribution in molecules. It resulted in more rigorous theoretical justifications of important rules of chemistry, soon to be followed by general variational principles for chemistry, which both elegantly united many facets of the electronic structure/chemical reactivity facts, and allowed for more accurate predictions of behaviour of chemical species. Despite this success of DFT, the knowledge of its basic theorems and generalizations is not widespread among chemists, to the best knowledge of the Author. Even in the university quantum chemistry course this subject is rarely mentioned, with the methodological core usually covering exclusively the traditional Hartree-Fock (HF) molecular orbital theory and its configuration interaction (CI) extensions. Little is known, for example, about the conceptual advantages of the Kohn-Sham orbitals over their HF counterparts, and the physical interpretation of the former. This review article, written in response to a kind invitation of this Journal Editor, attempts to fill this gap. This monographical survey covers the Hohenberg-Kohn theorems and their ensemble extensions due to Mermin, elements of the Kohn-Sham and Kohn-Sham-Mermin theories, and rudiments on the crucial density functional for the exchange-correlation energy. The discussion of the KS approach includes the KS equations for the optimum canonical orbitals and an analysis of the physical significance of the KS molecular orbitals, corresponding to a fictitious system of non-interacting electrons. The general form of the crucial functional for the exchange-correlation energy E(xc)[r] is summarized and the density scaling argument for its Local Density Approximation and the first nonlocal (density gradient) correction is presented. A general form of E(xc)[r] in terms of the exchange-correlation hole is introduced and specific examples of the non-local exchange and correlation functionals are given. Finally, some advantages of the related orbital dependent functionals E(xc)[{fi[r]}] used in the Optimized Effective Potential method are briefly mentioned. An emphasis is also placed upon selected concepts for chemistry. In particular characteristics of the electronic "gas" in open molecular systems, covering the chemical potential (negative electronegativity), Fukui function, and the absolute measures of the chemical hardness (softness), are discussed in a more detail, including their behaviour in the zero temperature limit. It is argued that DFT facilitates a thermodynamical-like description of the polarization and charge-transfer phenomena in molecular systems, e.g., those accompanying interaction between reactants, adsorbate and substrate in heterogeneous catalysis, etc.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.