Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tensor product spaces
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Let X, Y be real, infinite-dimensional Banach spaces. Let L(X, Y) be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ L(X, Y) is to estimate the limit (which always exists) limt→0+ ‖A + tB‖ − ‖A‖ / t for B ∈ L(X, Y), using the values of B on the state space SA = {τ ∈ L(X, Y)∗ : τ(A) = ‖A‖, ‖τ‖ = 1}. In this paper, we give several examples of Banach spaces, including the ℓp spaces (for 1 < p < ∞) where a more tangible estimate is possible, under additional hypotheses on A. We also use the notion of norm-weak upper-semi-continuity (usc, for short) of the preduality map to achieve this. Our results also show that the operator subdifferential limit is related to the corresponding subdifferential limit of the vectors in the range space, when A∗∗ attains its norm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.