Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  system wielostanowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Many systems are affected by different random factors and stochastic processes, significantly complicating their reliability analysis. In general, the performance of complicated systems may gradually, suddenly, or continuously be downgraded over times from perfect functioning to breakdown states or may be affected by unexpected shocks. In the literature, analytic reliability assessment examined for especial cases is restricted to applying the Exponential, Gamma, compound Poisson, and Wiener degradation processes. Consideration of the effect of non-fatal soft shock makes such assessment more challenging which has remained a research gap for general degraded stochastic processes. Through the current article, for preventing complexity of analytic calculations, we have focused on applying a simulating approach for generalization. The proposed model embeds both the stochastic degradation process as well randomly occurred shocks for two states, multi-state, and continuous degradation. Here, the user can arbitrarily set the time to failure distribution, stochastic degradation, and time to occurrence shock density function as well its severity. In order to present the validity and applicability, two case studies in a sugar plant alongside an example derived from the literature are examined. In the first case study, the simulation overestimated the system reliability by less than 5%. Also, the comparison revealed no significant difference between the analytic and the simulation result in an example taken from an article. Finally, the reliability of a complicated crystallizer system embedding both degradation and soft shock occurrence was examined in a threecomponent standby system.
PL
Prawidłowe działanie wielu systemów zależy od różnych czynników losowych i procesów stochastycznych, co znacznie komplikuje analizę niezawodności tych układów. Parametry pracy skomplikowanych systemów mogą ulegać stopniowemu, nagłemu lub stałemu obniżeniu ze stanu doskonałego funkcjonowania do stanu awaryjnego. Wpływ na nie mogą też mieć niespodziewane obciążenia. W literaturze przedmiotu, analityczną ocenę niezawodności stosuje się do badania przypadków szczególnych i ogranicza do badania degradacji w oparciu o proces wykładniczy, proces gamma, złożony proces Poissona i proces Wienera. Ocena niezawodności z uwzględnieniem wpływu obciążeń miękkich, nieprowadzących do całkowitej awarii, stanowi większe wyzwanie tworząc lukę w badaniach nad ogólnymi stochastycznymi procesami degradacji. Aby uniknąć złożonych obliczeń analitycznych, w niniejszej pracy skupiliśmy się na zastosowaniu podejścia symulacyjnego w celu uzyskania generalizacji. Proponowany model obejmuje zarówno stochastyczny proces degradacji, jak i losowo występujące obciążenia i uwzględnia przypadki degradacji systemów dwustanowych, wielostanowych oraz degradacji ciągłej. Posługując się tym modelem, użytkownik może dowolnie ustawiać rozkład czasu do uszkodzenia, degradację stochastyczną, czas do wystąpienia obciążenia, funkcję gęstości prawdopodobieństwa wystąpienia obciążenia, a także jego nasilenie. Trafność oraz możliwości zastosowania przedstawionego modelu zilustrowano na podstawie dwóch studiów przypadków dotyczących cukrowni oraz przykładu zaczerpniętego z literatury. W pierwszym studium przypadku, poziom niezawodności systemu obliczony na podstawie symulacji różnił się o mniej niż 5% od wyniku otrzymanego na drodze analitycznej. Porównanie nie ujawniło również żadnej istotnej różnicy między wynikiem analitycznym a symulacyjnym w przykładzie pochodzącym z literatury. Artykuł wieńczy analiza niezawodności złożonego układu krystalizatora, obejmująca zarówno degradację, jak i występowanie miękkich obciążeń w trójelementowym systemie krystalizatora z rezerwą.
EN
Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are difficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted automatically. An illustrative example is used to demonstrate the performance of the method.
PL
Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.
PL
W niniejszej pracy zaproponowano nową metodę analizy niezawodności systemów wielostanowych wykorzystującą sieci Bayesa (BN) oparte na rozmytych podzbiorach zmienności opisanych za pomocą trójkątnej funkcji przynależności. Metoda ta uwzględnia rozmyty charakter danych dotyczących uszkodzeń, wielostanowość systemu oraz zmienność prawdopodobieństwa wystąpienia uszkodzenia w czasie. BN, które znalazły zastosowanie w modelowaniu i metodach obliczeniowych, wykorzystuje się także do analizy niezawodności. W przedstawionych badaniach, analizę BN uzupełniono o elementy teorii zbiorów rozmytych wykorzystując do opisu prawdopodobieństwa wystąpienia uszkodzenia, podzbiory zmienności opisane przez trójkątną funkcję przynależności. Niepewność zależności logicznej pomiędzy awariami reprezentowanymi przez różne węzły sieci opisano za pomocą tabel rozmytego prawdopodobieństwa warunkowego. W pierwszej kolejności analizowano prawdopodobieństwo uszkodzenia każdego korzenia (węzła głównego) w funkcji czasu. Następnie, wyznaczono trójkątny rozmyty podzbiór zmienności, za pomocą którego opisano rozmyte prawdopodobieństwo uszkodzenia węzłów głównych. Podzbiór ten wykorzystano do analizy niezawodności systemu wielostanowego przy pomocy rozmytych BN. Artykuł kończy opis wypadku podczas ruchu wózka windy szybkobieżnej, który potwierdza skuteczność i możliwość praktycznego wykorzystania proponowanej metody. Wyniki pokazują, że proponowane podejście może skutecznie rozwiązywać na wczesnym etapie problemy związane z niepewnością informacji oraz wielostanowością systemu.
EN
In this paper, a novel reliability analysis method for multi-state system is proposed on the basis of triangular fuzzy variety subset Bayesian network (BN). The method considers fuzziness, multi-state, and variety of failure probability over time. With advantages in modeling and computation, the BN is utilized for reliability analysis. Fuzzy set theory is introduced into the BN analysis by using triangular fuzzy variety subset to describe failure probability. The uncertainty of fault logical relationship between different nodes is described through fuzzy conditional probability tables. As a function of time, the failure probability of each root node is analyzed first. Subsequently, the triangle fuzzy variety subset is established to describe the fuzzy failure probability of root nodes. This subset is applied to analyze the reliability of multi-state system fuzzy BN. Finally, a case study on the car free movement accident of flexible high-speed elevator lift system is used to demonstrate the effectiveness and practicality of the proposed method. Results show that the proposed approach could effectively address the problems on information uncertainty and multi-state in the early stage.
PL
W niniejszej pracy badano metodę oceny dynamicznej, rozmytej gotowości eksploatacyjnej (dostępności) dyskretnego w czasie systemu wielostanowego pracującego w trybie drobnych uszkodzeń i napraw. Tradycyjnie zwykło się zakładać, że analiza niezawodności dostarcza dokładnych danych niezawodnościowych na temat danego dyskretnego w czasie komponentu/systemu. W praktyce inżynieryjnej jednak trudno jest uzyskać dokładne dane do oceny właściwości komponentu/systemu. W niniejszej pracy zaproponowano jak problem ten można rozwiązać wykorzystując do oceny dynamicznej gotowości dyskretnego w czasie systemu wielostanowego, teorię zbiorów rozmytych. Rozmyty model Markowa z dyskretnym czasem i rozmytą macierzą prawdopodobieństw przejść zastosowano do analizy rozmytego prawdopodobieństwa stanu każdego elementu w dowolnym czasie dyskretnym. Opracowano rozmytą transformatę Lz rozmytego, dyskretnego w stanach i czasie łańcucha Markowa, która pozwala poszerzyć transformatę Lz modelu Markowa dyskretnego w stanach i ciągłego w czasie o zbiory ostre. W oparciu o metodę alfa przekrojów oraz rozmytą transformatę Lz, obliczono dynamiczną rozmytą gotowość eksploatacyjną systemu, wykorzystując do tego celu technikę programowania parametrycznego. Zastosowanie proponowanej metody zilustrowano na przykładzie liczbowym analizując układ przesyłu.
EN
This paper studies assessment approach of dynamic fuzzy availability for a discrete time multi-state system under minor failures and repairs. Traditionally, it was assumed that the exact reliability data of a component/system with discrete time are given in reliability analysis. In practical engineering, it is difficult to obtain precise data to evaluate the characteristics of a component/system. To overcome the problem, fuzzy set theory is employed to deal with dynamic availability assessment for a discrete time multi-state system in this paper. A fuzzy discrete time Markov model with fuzzy transition probability matrix is proposed to analyze the fuzzy state probability of each component at any discrete time. The fuzzy Lz-transform of the discrete-state discrete-time fuzzy Markov chain is developed to extend the Lz-transform of the discrete-state continuous-time Markov model with crisp sets. Based on the α-cut approach and the fuzzy Lz-transform, the dynamic fuzzy availability of the system is computed by using parametric programming technique. To illustrate the proposed method, a flow transmission system is analyzed as a numerical example.
EN
This paper discusses the multi-state system (MSS) consisted of multi-state components with minor failure and minor repair. In order to obtain the reliability indices of MSS, a new combined method is suggested. This method is based on the Markov stochastic process and the universal generating function (UGF) technology. The traditional idea of modeling the MSS is to use straightforward Markov process. That is not effective enough for the MSS because the model of the system is complicated usually and the state space often arouses “dimension curse” - huge numbers of the states. We suggest it should model the multi-state components and the UGF of multi-state components can be obtained firstly. Then the MSS can be decomposed into several subsystems which only contain simple series-parallel structure. According to the physical nature of the subsystems, the UGF of those subsystems can be employed recursively. Furthermore the UGF of the entire MSS will be obtained. Therefore, the reliability indices of the MSS can be evaluated easily. The suggested method simplifies greatly the complexity of calculation and is well formulized. Two numerical examples illustrate this method.
PL
W artykule omówiono system wielostanowy (multi-state system, MSS) składający się z elementów wielostanowych, które mogą ulegać drobnym uszkodzeniom i podlegają drobnym naprawom. Zaproponowano nową metodę łączoną, która pozwala wyznaczać wskaźniki niezawodności MSS. Metoda ta opiera się na procesie stochastycznym Markowa oraz technologii uniwersalnej funkcji tworzącej (universal generating function, UGF). Tradycyjnie do modelowania MSS wykorzystuje się sam proces Markowa. Metoda ta nie jest jednak wystarczająco skuteczna w przypadku MSS, ponieważ modele tego typu systemów są zazwyczaj skomplikowane, a przestrzeń stanów często prowadzi do tzw. "przekleństwa wielowymiarowości" – konieczności uwzględnienia ogromnej liczby stanów. Nasza metoda polega na modelowaniu elementów wielostanowych, dla których, w pierwszej kolejności wyznacza się UGF. Następnie MSS można rozłożyć na kilka podsystemów, które mają prostą strukturę szeregowo-równoległą. Charakter fizyczny tych podsystemów, pozwala na rekurencyjne stosowanie UGF dla tych podsystemów. Ponadto metoda umożliwia wyznaczenie UGF dla całego MSS, co pozwala na łatwą ocenę wskaźników niezawodności MSS. Proponowana metoda znacznie upraszcza obliczenia i jest dobrze sformalizowana. W pracy przedstawiono dwa przykłady numeryczne, które ilustrują omawianą metodę.
EN
Reliability and availability of electric power system equipment (e.g., generator units, transformers) are often evaluated by defining and solving Markov models. Transition rates among the identified equipment states are estimated from experimental and field data, or expert judgment, with inevitable uncertainty. For model understanding and to guide validation and confidence building, it is of interest to investigate the effects of the uncertainty in the input transition rates on the output reliability and availability. To this aim, Global Sensitivity Analysis (GSA) can be used for defining importance (sensitivity) indexes that allow a ranking of the transition rates with respect to their influence on the uncertainty in the output. In general, GSA requires a large number of model evaluations. In this paper, a metamodel is defined to estimate the performance index of interest (e.g. reliability or availability). The metamodel is built based on polynomial chaos expansion (PCE), a multidimensional polynomial model approximation whose coefficients are determined by evaluating the model in a reduced set of predetermined values of the input. The proposed approach is illustrated on a power generating unit.
PL
Niezawodność i gotowość urządzeń elektroenergetycznych jest często oceniana poprzez definiowanie i rozwiązywanie modeli łańcuchów Markowa. Współczynniki prawdopodobieństwa przejścia pomiędzy zdefiniowanymi stanami urządzeń są oceniane na podstawie badań doświadczalnych i danych otrzymanych dla realnych systemów lub są przedmiotem oceny ekspertów. W celu zrozumienia istoty modelu, kierowania procesem jego walidacji oraz budowania zaufania należy się zainteresować zbadaniem wpływu niepewności w określeniu wejściowych współczynników przejścia w modelu Markowa na uzyskiwane wyjściowe wartości niezawodności i gotowości. W tym celu został zdefiniowany metamodel pozwalający na określenie współczynników wpływu na parametry eksploatacyjne (np. niezawodność czy gotowość). Ten metamodel został zbudowany w oparciu o rozwinięcie w chaos wielomianowy, wielowymiarowy modelu aproksymacji wielomianowej, gdzie współczynniki modelu są określane poprzez ewaluację modelu dla zredukowanego zbioru predefiniowanych wartości wejściowych. Zaproponowany sposób jest zilustrowany na przykładzie bloku elektroenergetycznego.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.