Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  system bramkowania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The paper is discussed the anticipation of the simulation software precision with the real moulding process by setting up the distinctive metering stroke separation. Design/methodology/approach: The Inventor CAD software was used to design the product experiment and perform the simulation by applying MoldFlow application to produce the processing parameter defining for the injection moulding machines. Findings: The results predicted by this filling simulation appears reasonable result as compared to the injected product. Prediction analysis given by the software is exceptionally valuable for the injection moulding parameter setting machines which can diminish the time of mould setup and can reduce the trial stage on the production line. Research limitations/implications: The gating system is the most crucial part in injection moulding process and the limitation is to get the accurate filling time and injection pressure to ensure the cavity is fully filled before the material at the gate solidify. Originality/value: Gating system configurations are utilized to optimize the filling conditions of injection moulding parts. This important element was developed for achieving product quality. The utilize of simulation software is exceptionally supportive in the model designing stage to predict the quality and process capacity for the product. This paper presents the filling simulation of the side gate system to the injection moulding parameter.
EN
High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 =1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
EN
One of the main reason for decreased internal homogeneity of aluminium alloy castings is reoxidation. The resulting products of reoxidation are doubled oxides, so called "bifilms". Submitted paper deals with optimization of gating system design in order to reduce reoxidation processes taking place in mold cavity. Experimental work compares and evaluates three gating systems designs based on non-pressurized and naturally pressurized principles. Unconventional spin trap extension of runner was used in third design. Among the evaluated aspects were: mechanical properties, hot tearing index, visual inspection of average porosity amount, numerical simulation of velocity, turbulence and oxide amount. Paper aim is also to clarify the reoxidation phenomenon by visualization with the aid of ProCAST numerical simulation software. Results of mechanical properties and hot tear index clearly confirmed the positive effect of the naturally pressurized gating system with applied element for velocity reduction.
EN
Submitted work deals with the analysis of reoxidation processes for aluminium alloys. Due to the aluminium high affinity to the oxygen, the oxidation and consequently reoxidation will occur. Paper focuses on the gating system design in order to suppress and minimize reoxidation processes. Design of the gating system is considered as one of the most important aspect, which can reduce the presence of reoxidation products - bifilms. The main reason for the reoxidation occurrence is turbulence during filling of the mold. By correctly designing the individual parts of gating system, it is possible to minimize turbulence and to ensure a smooth process of the mold filling. The aim of the work is an innovative approach in the construction of gating system by using unconventional elements, such as a naturally pressurized system or vortex elements. The aim is also to clarify the phenomenon during the gating system filling by visualization with the aid of ProCAST numerical simulation software. ProCAST can calculate different indicators which allow to better quantify the filling pattern.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.