Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 34

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  synthesis gas
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The reforming of methane with carbon dioxide is still of great interest due to the ever-increasing demand for synthesis gas and hydrogen. This process makes it possible to use two major gases that are considered harmful to the environment. The main problem for its commercial application is the lack of a catalyst that is both active, selective towards syngas (a mixture of hydrogen and carbon monoxide) and resistant to deactivation by coke deposition. Nickel is the most commonly used metal in methane reforming reactions due to its high activity and reasonable price. But still there is a gap in the literature for research on novel catalysts and their properties modifications devoted to strategies to reduce deactivation of the catalysts caused by the coke formation. In the present work a series of hydroxyapatite supported nickel catalysts promoted by alkali metals (Li, Na, K and Cs) were tested. The surface and structural properties of the catalysts were well characterized by physicochemical methods. Activity and selectivity were measured at 600ºC for 20 hours’ time-on-stream test. Resistance to coking was measured with Magnetic Suspension Balance. The stability of the catalyst was improved by the addition of promoters, which reduced the rate of coking. In particular, the cesium-promoted Ni/HAp catalyst significantly inhibited coke deposition, while slightly reducing methane conversion and selectivity to hydrogen.
PL
W pracy przedstawiono wyniki badania zgazowania węgla brunatnego z kopalni „Turów” w reaktorze ze złożem stałym. Scharakteryzowano konwersję materii organicznej węgla brunatnego do gazu syntezowego, który charakteryzował się znaczną wartością opałową. Badano wpływ czynnika zgazowującego, temperatury i ciśnienia na skład otrzymywanych gazów.
EN
The paper presents the results of the research on gasification of lignite from the Turów mine in a reactor with a fixed bed. The conversion of brown coal organic matter to synthesis gas, which was characterized by a significant calorific value. The influence of the gasification agent, temperature and pressure on the gas compositions was investigated.
EN
The catalytic combustion of hydrogen and carbon monoxide over Pt/γ-Al2O3 catalyst was investigated numerically for H2/CO/O2/N2 mixtures with overall lean equivalence ratios ϕ = 0.117 .. 0.167, H2:CO molar ratios 1:1.5 .. 1:6, a pressure of 0.6 MPa, and a surface temperature range from 600 to 770 K relevant for micro-scale turbines and large gas turbine based power generation systems. Simulations were carried out with a two-dimensional CFD (Computational Fluid Dynamics) model in conjunction with detailed hetero-/homogeneous kinetic schemes and transports to explore the impact of hydrogen addition on catalytic combustion of carbon monoxide. The detailed reaction mechanisms were constructed by implementing recent updates to existing kinetic models. The simulation results indicated that the hydrogen addition kinetically promotes the catalytic combustion of carbon monoxide at wall temperatures as low as 600 K, whereby the catalytic reactions of hydrogen are fully lit-off and the conversion of carbon monoxide is mixed transport/kinetically controlled. Such a low temperature limit is of great interest to idling and part-load operation in large gas turbines and to normal operation for recuperative micro-scale turbine systems. Kinetic analysis demonstrated that the promoting impact of hydrogen addition on catalytic combustion of carbon monoxide is attributed to the indirect effect of hydrogen reactions on the surface species coverage, while direct coupling steps between hydrogen and carbon monoxide are of relatively minor importance. The added hydrogen inhibits the catalytic oxidation of carbon monoxide for wall temperatures below 520 K, which are well below the minimum inlet temperatures of reactants in micro-scale turbine based power generation systems.
4
EN
One of the methods of increasing the overall biomass share in the electricity and heat production is its gasification and subsequent co-combustion of the obtained syngas in conventional power boilers. The process of biomass gasification is relatively well controlled and understood. It does not change the fact that the syngas composition depends on many process factors, as well as the composition of the charge batch. Unfortunately, it means that the obtained product is not homogeneous in time. Consequently, the use of such fuel for electricity production may present a number of problems from the control point of view. Therefore, both during the syngas production and the co-firing process, it is advisable to use information on the composition of produced syngas, or at least its main components. It is possible to use optical methods, which are an interesting alternative to classical methods, even despite unfavorable measurement conditions. The article presents selected optical method for the synthesis gas monitoring. The results of simulation studies are presented, confirming the possibility of determining the concentration of interesting components in the syngas mixture.
PL
Podziemne zgazowanie węgla jako perspektywiczna metoda pozyskiwania gazu syntezowego będzie powodować powstawanie pustek w górotworze, które pozostawione bez wypełnienia będą przyczyną znacznych deformacji powierzchni. W artykule przedstawiono wyniki rozważań teoretycznych nad wpływem ściśliwości podsadzki i stopnia wypełnienia na wartość współczynnika osiadania przy podsadzaniu pustek po podziemnym zgazowaniu węgla.
EN
Underground coal gasification as a prospective method for obtaining synthesis gas will result in the formation of voids in the ground which with no fill left, it will cause significant deformation of the surface. This paper presents the results of theoretical considerations on the influence of backfill compressibility and the filling degree on the value of the subsidence coefficient in the backfill of the voids in the light of underground coal gasification.
EN
The paper presents the results of the experimental study on simulated application of High Temperature Reactor (HTR) excess heat in the allothermal coal gasification to synthesis gas and hydrogen-rich gas. The effects of application of gasification agents pre-heating was tested in a laboratory scale fixed bed reactor installation. The installation was equipped with a specially designed auxiliary pre-heating system for gasification agents applied (air, oxygen or steam), simulating the utilization of the HTR excess heat. The results of the study proved the feasibility of the utilization of the external excess heat in air and steam coal gasification.
PL
W artykule przedstawiono wyniki badań symulacyjnych zastosowania ciepła nadmiarowego z wysokotemperaturowego reaktora jądrowego (HTR) w procesie allotermicznego zgazowania węgla do gazu syntezowego i gazu bogatego w wodór. Określono wpływ wstępnego przegrzania czynnika zgazowującego na wyniki procesu zgazowania w laboratoryjnej instalacji z reaktorem ze złożem stałym. Instalacja została wyposażona w specjalnie do tego celu zaprojektowany układ wstępnego przegrzania czynnika zgazowującego (powietrze, tlen lub para wodna), symulujący wykorzystanie ciepła nadmiarowego z reaktora HTR. Wyniki badań potwierdziły możliwość wykorzystania zewnętrznego źródła ciepła nadmiarowego w procesie zgazowania węgla powietrzem i para wodną.
PL
Przeprowadzono serię sześciu symulacji eksperymentalnych procesu podziemnego zgazowania węgla (PZW) w warunkach powierzchniowych (ex-situ), których celem było określenie typu geometrii kanału ogniowego oraz warunków prowadzenia procesu pozwalających na uzyskanie gazu o możliwie najwyższej wartości opałowej. 5 prób zgazowania prowadzono z wykorzystaniem węgli kamiennych oraz jedną na węglu brunatnym, stosując do zgazowania różne czynniki zgazowujące, tj. tlen, powietrze oraz ich mieszaniny. Badania wykazały, że konfiguracja kanału ogniowego ma istotny wpływ na przebieg procesu zgazowania oraz na wartość opałową gazu, głównie ze względu na różną zawartość tlenku węgla w gazach otrzymywanych dla różnych konfiguracji. Dla przyjętych geometrii złóż węglowych, najkorzystniejsze warunki przebiegu procesu zgazowania obserwowano w przypadku stosowania czystego tlenu. Średnie wartości opałowe gazu produkowanego w trakcie zgazowania węgli kamiennych tlenem mieściły się w przedziale od 7,6 do 9,7 MJ/Nm3, a uzyskiwane sprawności energetyczne procesu mieściły się w przedziale od 46,8 % do 79 %. Zamiana czynnika zgazowującego na powietrze spowodowała znaczny spadek temperatur w reagującym układzie, skutkujący wyraźnymi spadkami stężeń głównych składników palnych gazu (H2, CO). W warunkach podniesionego ciśnienia zgazowania powietrzem uzyskiwano wyższą wartość opałową gazu, głównie z powodu zwiększenia udziału metanu w gazie.
EN
A series of six experimental simulations of the underground coal gasification process (UCG) in the surface conditions (ex situ) was conducted. The main aim was to determine the influence of gasification channel geometry and process conditions on the calorific value of gas. Five gasification tests were conducted using hard coal samples and one experiment was carried out on lignite. The gasification tests were carried out with distinct gasification reagents, i.e. oxygen, air and their mixtures. Studies have shown that the gasification channel configuration has a significant influence on the gasification process and on gas calorific value, mainly due to the variation of the content of carbon monoxide in the gases obtained for the different configurations. For the tested geometries, the most favorable conditions for the gasification process were observed in the case of pure oxygen. Mean calorific value of the gas produced during the gasification of hard coal with oxygen ranged from 7.6 to 9.7 MJ/Nm3 and energy efficiency of the process obtained ranged from 46.8% to 79%. When using air as the gasifying agent, a significant decrease in temperature was observed, resulting in a decrease in the concentrations of combustible gas components (H2, CO). Under the conditions of elevated pressure with air, a higher heating value of gas was obtained, mainly due to the increase in the concentration of methane in the UCG gas.
PL
W artykule przedstawiono porównanie najbardziej dojrzałych i perspektywicznych reaktorów, które mogą być wykorzystane do zgazowania węgla w polskich warunkach. Wybrano reaktory dyspersyjne: Shell, GE/Texaco, Prenflo, Siemens i E-Gas, reaktor fluidalny U-Gas oraz reaktor transportujący KBR Transport. Reaktory te reprezentują różne rozwiązania technologiczne. Technologie wykorzystujące te reaktory są szeroko stosowane na całym świecie i mogą być wykorzystane zarówno dla potrzeb sektora energetycznego, jak i chemii czy produkcji paliw. Dokonano również analizy różnych rozwiązań technologicznych procesów podziemnego zgazowania węgla oraz najważniejszych konfiguracji technologicznych oczyszczania gazu ze zgazowania, w zależności od jego zastosowania.
EN
This paper presents a comparison of the most advanced and prospective reactors which can be used for coal gasification in Poland. Entrained bed reactors Shell, GE / Texaco, Prenflo, Siemens and E-Gas fluidized bed reactor U-Gas and the transporting reactor KBR were taken into consideration. These reactors represent different technological solutions. Technologies using these reactors are widely used throughout the world and can be used both for energy, chemicals and fuels production. Various technological processes of underground coal gasification and the most important technological configuration of the gasification gas purification, depending on its application, were also examined.
PL
Gaz syntezowy wytwarzany z węgla przez zgazowanie stosowany jest do syntez paliw płynnych i do syntez chemicznych. W wyniku procesu Fischera-Tropscha ubocznie powstają związki tlenowe: głównie alkohole, a także aldehydy, ketony, estry i kwasy organiczne. Część związków tlenowych jest stosowana jako dodatki do paliw. Oksygenaty mogą być też wykorzystywane jako związki pośrednie do produkcji różnych chemikaliów specjalistycznych. Zatem otrzymywanie związków tlenowych w ramach procesu Fischera-Tropscha może być również celowym kierunkiem pozaenergetycznym. Idą za tym możliwości katalitycznych transformacji oksygenatów – dehydratacja, odwodornienie, hydroprzetwarzanie. Alkohole mogą być źródłem wodoru, mogą też podlegać transformacji do innych oksygenatów lub węglowodorów. Jedną z opcji jest dwucząsteczkowa kondensacja alkoholi pierwszorzędowych i/lub aldehydów do ketonów.
EN
The synthesis gas, produced by gasification of coal, is used for the synthesis of liquid fuels and for chemical synthesis. As a result of the Fischer-Tropsch process, oxygenates are formed in a side reactions. primarily alcohols, but also aldehydes, ketones, esters and organic acids. Part of the oxygen containing compounds is used as the fuel additives. Oxygenates can also be used as intermediates in the production of various specialty chemicals. Thus, the preparation of the oxygen containing compounds within the Fischer-Tropsch process can also be, not focused on energy, an intentional direction. Opportunities of catalytic transformation of oxygenates go after: dehydration, dehydrogenation, hydroprocessing. Alcohols can be a source of hydrogen, can also be transformed into other oxygenates or hydrocarbons. One of options is the bimolecular condensation of primary alcohols and/or aldehydes into ketones.
PL
W pracy zbadano wpływ trzech różnych konfiguracji kanałów ogniowych na wydajność i skład produktów gazowych powstałych podczas podziemnego zgazowania węgla kamiennego. Każdy eksperyment został przeprowadzony przy użyciu różnego rodzaju węgla. Stwierdzono, że niezależnie od rodzaju konfiguracji kanału ogniowego, zmierzone temperatury zgazowania nie były niższe od 1000 °C. Eksperymenty wykazały, że wydłużenie kanałów ogniowych było bardziej korzystne dla procesu zgazowania węgla niż stosowanie krótszych kanału. Możliwe było również wpływanie na proces zgazowania poprzez zmiany stężeń i natężenie przepływu czynników zgazowujących oraz przez szybkość odbioru wyprodukowanego gazu.
EN
This article presents the impact of three different configurations of a fire channel on the efficiency and composition of gas products from coal gasification. Each experiment was performed by use of a different type of coal. Regardless of the type of fire channel configuration, the measured temperature of gasification was equal or higher than 1000˚C. It has been proved that the extension of a fire channel was more beneficial for the process of gasification than in case of a short fire channel application. The changes in concentration, flow rate of gasifying media and the rate of gas obtaining influenced the gasification process as well.
PL
W pracy przedstawiono wyniki rozważań teoretycznych nad możliwością wykorzystania energii pochodzącej z wysokotemperaturowych reaktorów jądrowych (HTR) do prowadzenia silnie endotermicznego procesu zgazowania paliw kopalnych za pomocą ditlenku węgla. Otrzymany w tym procesie gaz syntezowy mógłby być wykorzystany do syntez chemicznych np. produkcji metanolu, bądź płynnych paliw syntetycznych. Równocześnie praktyczna realizacja takiego procesu pozwoliłoby na ograniczenie emisji ditlenku węgla do atmosfery. Następowałoby to w dwójnasób: poprzez ograniczenie ilości spalanego paliwa (węgla) niezbędnego do realizacji procesu, jak również poprzez wykorzystanie ditlenku węgla jako substratu. Niestety ograniczeniem takiego rozwiązania jest względnie niska temperatura czynników grzewczych pochodzących z reaktora HTR (< 800°C), co niekorzystnie wpływa na równowagę procesu zgazowania. W celu oceny opłacalności realizacji analizowanego procesu opracowano metodykę obliczenia składu równowagowego powstającego gazu syntezowego. Założono, że proces zgazowania węgla (paliwa) zachodzi w dwóch następujących po sobie etapach. Są to: szybka piroliza paliwa, połączona z wytworzeniem gazu popirolitycznego i karbonizatu, a następnie zgazowanie powstałego karbonizatu mieszaniną czynników zgazowujących (CO2, H2O, O2) i gazów popirolitycznych. Dla takiego układu stworzono model chemiczny, umożliwiający na podstawie bilansu stechiometrycznego i danych termodynamicznych obliczenie składu równowagowego mieszaniny poreakcyjnej. Opracowana metodyka umożliwia wykonanie obliczeń dla dowolnego gatunku węgla przy zastosowaniu mieszaniny ditleneku węgla, pary wodnej i tlenu o dowolnych proporcjach i nadmiarze w stosunku do ilości zgazowywanego węgla. Niezbędna jest do tego jedynie znajomość podstawowych właściwości fizykochemicznych paliwa oraz zależności składu gazów popirolitycznych i wydajności pirolizy od temperatury. W pracy przedstawiono wyniki przykładowych obliczeń składu równowagowego w zakresie 600-900°C. Odpowiada to temperaturze czynnika grzewczego pochodzącego z reaktora HTR. Analiza wpływu różnych czynników (np. rodzaju węgla, temperatury, składu początkowego czynników zgazowujących) pozwoli dokonać optymalizacji procesu zgazowania pod kątem minimalizacji zużycia tlenu oraz uzyskania gazów o dużej zawartości wodoru czy też doboru węgla o najlepszych właściwościach do niskotemperaturowego zgazowania.
EN
Paper presents results of theoretical deliberations on the possibility to utilize energy deriving from high temperature nuclear reactors (HTR) to drive highly endothermic fossil fuels gasification by the assistance of carbon dioxide. Synthesis gas resulting in this process could be utilized for chemical syntheses e.g. to produce methanol or liquid synthetic fuels. At the same time practical implementation of such a process would make it possible to reduce carbon dioxide emissions to the atmosphere. This reduction would be realized in a twofold way: through a reduction of the amount of fuel burnt ( bituminous coal ) that is necessary to process execution as well as through utilization of carbon dioxide as a reaction substrate. Unfortunately the limit of such a solution has been relatively low temperature of the heating media coming out of the HTR reactors (< 800°C), which negatively influences on the gasification process equilibrium. In order to evaluate the economic feasibility of the process in question, the methodology to calculate the equilibrium composition of the synthesis gas was developed. It was assumed that coal gasification process takes place in two consecutive stages. They are referred to as: quick pyrolysis of the fuel associated with production of the after pyrolysis gas and carbonizate and consecutive gasification of the resulted carbonizate by means of the gasifying mixture of gases (CO2, H2O, O2) and after pyrolytic gases. For such a system the chemical model was created that enables to calculate equilibrium composition of the after reaction gas mixture based on stoichiometric balance and on thermodynamic data. The methodology that was developed makes it possible to produce calculations for any species of coal with the application of mixture of carbon dioxide , steam, and oxygen at any proportions and excess in relation to the amount of the gasified coal. What is necessary is only knowledge of the basic physical and chemical characteristics of fuel and dependence of the after pyrolytic gases composition and pyrolysis intensity on temperature. In this paper the exemplary calculation results of the equilibrium composition in temperature range of 600-900°C are presented. This corresponds to temperature of the heating medium from the nuclear reactor HTR. Analysis of the influence of various factors (e.g. coal species, temperature, initial composition of the gasifying media) will enable the optimization of gasification process at an angle of oxygen consumption minimization and obtaining gases with high hydrogen concentration, or selection of coal with the best characteristics to low temperature gasification.
15
Content available remote Chemia gazu syntezowego i ditlenku węgla : zarys współczesnych możliwości
PL
Przedstawiono rolę oraz znaczenie chemii tlenków węgla w rozwoju przemysłu syntezy chemicznej.
EN
The role and importance of C oxides in the development of chem. synthesis industry was presented.
EN
Dehydrogenation of propane in the presence of CO2 was considered as an alternative to commercial dehydrogenation pathway of obtaining propene and the new sources of synthesis gas. Based on thermodynamic calculations and a catalytic tests it was shown that by controlling CO2 concentration in the feed the molar ratio of H2/CO (synthesis gas) in the products mixture can be regulated. Several different pathways of DHP-CO2 process integration with commercialized chemical processes utilized synthesis gas were proposed.
PL
W celu wydzielenia wodoru z gazu syntezowego (mieszanina CO, H2, CO2 i CH4) wykorzystuje się na skalę przemysłową system dwuetapowy. W pierwszym etapie stosowany jest reforming wodny - WGS (Water Gas Shift) w celu zwiększenia udziału wodoru w mieszaninie gazowej. W drugim etapie można zastosować adsorpcję zmiennociśnieniową - PSA (Pressure Swing Adsorption), destylację kriogeniczną lub techniki membranowe. W wyniku membranowej separacji gazu syntezowego uzyskuje się strumień permeatu (wzbogacony w wodór) i strumień retentatu [3]. Istnieje wiele typów membran używanych do separacji wodoru. W poniższej pracy rozważane są membrany polimerowe i metaliczne np. typu palladowego. Wykorzystywane w badaniach w Instytucie Chemii i Techniki Jądrowej membrany poliimidowe charakteryzują się możliwością pracy przy wysokim ciśnieniu, wysoką odpornością termiczną, chemiczną i mechaniczną oraz wysoką selektywnością rozdziału H2-CO [1]. Jednocześnie, są wrażliwe na niektóre związki chemiczne, takie jak: kwas chlorowodorowy, tlenki siarki i dwutlenek węgla. Przy wykorzystaniu membran czysto palladowych lub zbudowanych ze stopów palladowych możliwe jest osiągnięcie wysokiej czystości wodoru (do 99,99 %). Membrany metaliczne do separacji wodoru to najczęściej: czyste metale (Pd), dwuskładnikowe stopy (Pd-Ag, Pd-Au, Pd-Cu,), wieloskładnikowe stopy (Pd-In-Ru) [2].
EN
Two-stage system is used on an industrial scale for separation of hydrogen from synthesis gas (a mixture of CO, H2, CO2 and CH4). In the first stage Water Gas Shift (WGS) reaction is used for increase concentration of hydrogen in the gas mixture. In the second stage can be used: Pressure Swing Adsorption (PSA), cryogenic distillation and membrane technology. Permeate stream (enriched in hydrogen) and retentate stream (depleted in hydrogen) are obtained as a result of the synthesis gas membrane separation. There are many types of membranes used for purification of hydrogen. The following paper includes hydrogen separation using polymeric and metallic membranes. In the Institute of Nuclear Chemistry and Technology polyimide membranes are using in research. These membranes are characterized by the ability to operate at high pressures, high thermal, chemical and mechanical resistance, and high separation selectivity of H2-CO. At the same time, they are sensitive to some chemicals such as hydrochloric acid, sulfur oxides and carbon dioxide. High purity of hydrogen (up to 99,99%) can be obtained by using membranes made of pure palladium or palladium alloys. The most prevalent metallic membranes for hydrogen separation are: pure metals (Pd), binary alloys (Pd-Ag, Pd, Au, Pd-Cu), multicomponent alloys (Pd-In-Ru).
PL
Otrzymywanie gazu syntezowego jest jednym z najważniejszych procesów przemysłu chemicznego, ponieważ wodór i tlenek węgla stanowią podstawę wielu syntez chemicznych. Zagadnienia związane z otrzymywaniem gazów o dużej zawartości wodoru nabierają również dużego znaczenia w aspekcie ich zastosowania w turbinach gazowych czy też ogniwach paliwowych dla potrzeb sektora energetycznego. Szczególne zainteresowanie tego sektora gazami wodoronośnymi wynika z konieczności obniżenia emisji CO2, co powinien zapewnić w przyszłości rozwój tzw. energetyki wodorowej. W artykule przedstawiono wyniki badań procesu otrzymywania gazu syntezowego w reaktorze membranowym na drodze autotermicznego reformingu metanu (ATR). Dla określenia wpływu zastosowanego rozwiązania konstrukcyjnego reaktora na jakość otrzymywanego gazu syntezowego, wykonano również badania ATR przy zastosowaniu klasycznego reaktora przepływowego. W badaniach procesu autotermicznego reformingu metanu zastosowano zmienne udziały molowe tlenu i pary wodnej na wejściu do reaktora, które wynosiły odpowiednio O2/CH4 = 0,1; 0,2; 0,3 oraz H2O/CH4 = 0,5; 1,5; 2,0. Otrzymane wyniki badań wskazują na możliwość otrzymywania w reaktorze membranowym gazu syntezowego o wyższej zawartości składników pożądanych, tzn. H2 i CO w porównaniu do gazu otrzymywanego w tych samych warunkach procesowych w klasycznym reaktorze rurowym. Uzyskane stopnie konwersji metanu w przypadku zastosowania reaktora membranowego były niższe niż uzyskiwane w reaktorze rurowym, przy tych samych parametrach wejściowych do obu reaktorów. Najwyższe stopnie konwersji uzyskano dla udziałów O2/CH4 = 0,3 i H2O/CH4 = 2 i wynosiły one odpowiednio 89,9% dla klasycznego reaktora rurowego i 76% dla reaktora membranowego.
EN
Synthesis gas produced from natural gas or coal is an important intermediate in the production of a range of chemicals. Commercially available today for synthesis gas production are steam reforming, autothermal reforming and partial oxidation of methane and coal gasification. In this paper, a membrane reactor study on the CH4 autothermal reforming is presented. Major application areas of membrane reactor can be classified into two types; i.e. yield enhancement and selectivity enhancement. Membrane reactors are mainly applied to reactions suffering from equilibrium conversions such as dehydrogenation reactions, decomposition and production of synthesis gas or in series-parallel reactions such as partial oxidation, partial hydrogenation, oxidative coupling and oxidative dehydrogenation by controlled addition of a reactant through a membrane [1, 10]. The results for the membrane reactor were compared to those for the tubular reactor to evaluate the effect of membrane application as oxygen distributor to the reaction zone on improvement in yields of the products. The experimental conversions of CH4 in the tubular and the membrane reactor were obtained as a function of various feed O2/CH4 and H2O/CH4 ratio. Results indicate that CH4 conversion increases with increasing O2:CH4 or/and H2O:CH4 ratio, but CH4 conversions reached in the tubular reactor was higher than the conversion obtained in the membrane reactor in all cases. The highest conversion achieved in tubular reactor was 89,9 % and 76% in membrane reactor for conditions: O2/CH4 = 0,3 and H2O/CH4 = 2. It was found that H2 and CO yield were considerably enhanced in the membrane reactor.
20
Content available remote Otrzymywanie wodoru z glicerolu
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.