Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  synteza na nośniku
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Progress in combinatorial chemistry is largely determined by development of specific synthetic organic chemistry tools such as solid supports, linkers, polymer supported reactions and methods of analysis, screening and deconvolution of combinatorial libraries. This review article presents basic terms related to polymer supported synthesis, enumerates major advantages of supported reactions, and gives a comprehensive, up to date, overview of support matrices used for immobilization of small and large molecules. The review covers the literature up to September 2002. The supports reviewed include (i) polymeric gels (Merrifield gel, TentaGel, ArgoGelTM, JandaJelTM, PEGA, PEG-PS, PEG-POP, SPOCC, PS-TTEGDA, CLEAR, DendroGel, Pepsyn, and Sucholeiki paramagnetic gel), (ii) soluble polymers (LPS, PEG, ROMP-polymer, PAMAM-dendrymer, Boltron), (iii) macroporous supports (CPG, Pepsyn K, PolyHIPE, ArgoPoreTM) and other developments including SMART reactors, MicroTubeTM, membranes, pins, and cellulose. For most of the supports reviewed basic characteristics such as swelling in different solvents, solvent usability, typical loading, typical anchoring groups, preparation, and recent applications are given or cited. The reviewed literature suggests that the supports most often used for synthesis of small molecules and peptides are based on gel matrices. The variety of available supports, many of which were introduced in the last years, shows that this area of synthetic methodology may grow dynamically in the future.
EN
Linkers constitute fundamental tools of polymer supported synthesis and combinatorial chemistry. Synthesis of any compound on solid support requires an efficient method for binding substrate molecules to solid phase and methods for cleavage of product molecules from the support after completion of the synthetic sequence. This review article presents role of linkers in solid-phase synthesis, analogy between linkers and protecting groups, and properties of linkers that need to be considered when planning synthesis of a particular compound on solid support. Basic concepts of linker methodology are presented and illustrated with selected examples. In addition the role of the linker as protection or activation of functional group of the substrate and an element controlling regio- or chemoselectivity is mentioned. The selected, representative examples of classical and recently elaborated linkers are classified according to the condition of cleavage. These include acid sensitive, base or nucleophile sensitive, photolabile, safety catch linkers, traceless linkers and cyclative cleavage linkers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.