Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  synchrony state generation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, the generation of temporal synchrony within an artificial neural network is examined considering a stochastic synaptic model. A network is introduced and driven by Poisson distributed trains of spikes along with white-Gaussian noise that is added to the internal synaptic activity representing the background activity (neuronal noise). A Hebbian-based learning rule for the update of synaptic parameters is introduced. Only arbitrarily selected synapses are allowed to learn, i.e. update parameter values. Results show that a network using such a framework is able to achieve different states of synchrony via learning. Thus, the plausibility of using stochastic-based models in modeling the neural process is supported. It is also consistent with arguments claiming that synchrony is a part of the memory-recall process and copes with the accepted framework in biological neural systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.