In Robbins' problem of minimizing the expected rank, a finite sequence of n independent, identically distributed random variables are observed sequentially and the objective is to stop at such a time that the expected rank of the selected variable (among the sequence of all n variables) is as small as possible. In this paper we consider an analogous problem in which the observed random variables are the steps of a symmetric random walk. Assuming continuously distributed step sizes, we describe the optimal stopping rules for the cases n = 2 and n = 3 in two versions of the problem: a „full information" version in which the actual steps of the random walk are disclosed to the decision maker; and a „partial information" version in which only the relative ranks of the positions taken by the random walk are observed. When n = 3, the optimal rule and expected rank depend on the distribution of the step sizes. We give sharp bounds for the optimal expected rank in the partial information version, and fairly sharp bounds in the full information version.
PL
W problemie Robbinsa celem jest zatrzymanie sekwencyjnych obserwacji skończonego ciągu niezależnych zmiennych losowych o tym samym rozkładzie tak, aby zminimalizować oczekiwaną rangę zatrzymanej zmiennej. Niniejsza praca poświęcona jest analogonowi problemu Robbinsa, w którym obserwowane zmienne losowe są wartościami symetrycznego błądzenia losowego. Zakładamy, że długości kroków są symetrycznymi zmiennymi losowymi o rozkładzie typu ciągłego. Opisujemy optymalne reguły zatrzymania dla przypadków n = 2 i n = 3 w dwóch wersjach problemu: wersja z pełną informacją, w której rzeczywiste długości kroków losowych są jawne i znane podejmującemu decyzje statystykowi, oraz wersja z częściową informacją, w której obserwowane są tylko względne ciągi pozycji zajmowanych przez ciągły, symetryczny, spacer losowy. Dla n = 3 optymalna strategia i oczekiwana ranga zależą od rozkładu długości kroków. Otrzymano ostre oszacowania dla wartości oczekiwanej otrzymanej rangi dla wersji problemu z częściową informacją oraz lepsze oszacowania dla problemu z pełną informacją.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.