Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  symmetric inverter
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedmiotem pracy są energoelektroniczne, rezonansowe falowniki klasy E i problematyka dotycząca ich właściwości energetycznych. Zasadniczym celem pracy jest kompleksowe przeanalizowanie możliwości zwiększenia mocy wyjściowej oraz sprawności falownika klasy E przez lepsze wykorzystanie parametrów pracy tranzystora. Do realizacji tego celu zastosowano odpowiednią analizę teoretyczną i weryfikujące badania laboratoryjne. Najważniejszymi założeniami obowiązującymi w ramach pracy są: zachowanie parametrów pracy tranzystora oraz dominacja strat mocy przewodzenia nad pozostałymi stratami tranzystora. Na początku pracy dokonano przeglądu stanu aktualnego zagadnienia (rozdz. 2). Następnie scharakteryzowano właściwości statyczne i dynamiczne tranzystorów mocy MOSFET, istotne z punktu widzenia ich stosowania w falownikach klasy E (rozdz. 3). Wskazano parametry tranzystorów ograniczające sprawność i moc wyjściową falowników. Ponieważ porównanie właściwości energetycznych oraz przeprowadzenie maksymalizacji sprawności falowników klasy E wymaga użycia odpowiednich współczynników, dlatego zdefiniowano sprawność drenową r\D, sprawność całkowitą rj, współczynnik mocy zainstalowanej tranzystora kvi oraz zmodyfikowany współczynnik wydajności mocy wyjściowej falownika CPQ (rozdz. 4). Wykazano, że kształt przebiegów napięcia i prądu tranzystora (wartość współczynnika &OT) ma wpływ na osiągane sprawności oraz moce wyjściowe falowników rezonansowych. W kolejnej części pracy wyjaśniono i uporządkowano terminologię z zakresu falowników klasy E (rozdz. 5) oraz dokonano systematycznego przeglądu i rozbudowanego porównania wybranych właściwości falowników klasy E (rozdz. 7). Zaproponowano nową, uogólnioną definicję układów klasy E, w której jako główny warunek podano maksymalnie miękkie przełączanie zaworu (diody, tyrystora, tranzystora). Znane z literatury klasy układów, uwzględniając ich specyficzne właściwości i charakterystyczne nazewnictwo, pogrupowano w klasy podstawowe, odwrotne, niepełne i mieszane. Następnie wyjaśniono współzależność pomiędzy wartościami parametrów falownika klasy E a realizowanym rodzajem pracy (pracą optymalną, suboptymalną lub nieoptymalną). Pokazano również możliwe, użyteczne lub całkowicie nieprzydatne praktycznie przypadki pracy optymalnej falownika klasy E. W celu oceny właściwości energetycznych różnych falowników rezonansowych wstępnie porównano pod tym względem wszystkie falowniki klasy E, falowniki klasy EF2 i E/F3 oraz kilka powszechnie znanych falowników klasy DE, D i D"1. Wymagane wartości ich parametrów obliczono na podstawie modeli komputerowych falowników. Modele te bazowały na równaniach stanu i ich rozwiązaniu za pomocą metody macierzy przejścia w programie Matlab (rozdz. 6, dodatek). Szczegółowa analiza właściwości falownika klasy E w funkcji jego parametrów wykazała (rozdz. 8), że niewielkie podwyższenie jego sprawności i kilkuprocentowe zwiększenie mocy wyjściowej można uzyskać stosując płytką pracę nieoptymalną, zmniejszając współczynnik wypełnienia przewodzenia tranzystora lub dołączając kondensator różnicowy w falowniku symetrycznym. Dlatego kontynuowano poszukiwania innych, bardziej efektywnych metod poprawy właściwości energetycznych falownika klasy E. Korzystniejszy kształt przebiegów napięcia i prądu tranzystora oraz wyższe sprawności i większe moce wyjściowe uzyskuje się w falownikach klasy EF2 i E/F3 (rozdz. 9). Falowniki te można utworzyć z dowolnego falownika klasy E. Wymagane jest jedynie dołączenie równoległe do tranzystora dodatkowego, szeregowego obwodu rezonansowego oraz właściwy dobór parametrów falownika. W falowniku klasy EF2 obwód ten dostrojony jest w przybliżeniu do częstotliwości drugiej harmonicznej, natomiast w falowniku klasy E/F3 do częstotliwości trzeciej harmonicznej. W obu falownikach tranzystor przełączany jest maksymalnie miękko, typowo dla układów klasy E. Na podstawie wyników analizy właściwości falowników klasy EF2 i E/F3 stwierdzono, że maksymalny przyrost ich mocy wyjściowych względem mocy falownika klasy E wynosi odpowiednio około 43% i 25% przy zachowaniu parametrów pracy tranzystora. Następnie kontynuowano analizę właściwości falowników klasy E, E?2 i E/F3. Przedstawiono i przedyskutowano pewne aspekty wpływu zmian parametrów falowników na ich właściwości. Na zakończenie pracy wybrane wyniki analizy teoretycznej potwierdzono eksperymentalnie (rozdz. 11). Skonstruowano oraz przebadano laboratoryjne falowniki klasy E, EF2 i E/F3, pracujące optymalnie z częstotliwością l MHz. Podczas pomiarów straty mocy (6,5 W) oraz wartość szczytową napięcia (455 V) tranzystora mocy MOSFET typu SPP20N65C3 utrzymywano na w przybliżeniu jednakowym poziomie. Dla kolejnych falowników klasy E, EF2 i E/F3 uzyskano następujące wyniki: sprawności drenowe 96,7%, 97,1%, 97,5%, sprawności całkowite 96,1%, 96,7%, 97,0% oraz moce wyjściowe 365,3 W, 525,3 W, 448,0 W. Stosunki mocy wyjściowych falowników klasy EF2 i E/F3 do mocy wyjściowej falownika klasy E wynosiły 1,44 oraz 1,23. Porównując wyniki obliczeń teoretycznych i pomiarów, pozytywnie zweryfikowano opracowane i wykorzystane w pracy modele komputerowe falowników klasy E, EF2 i E/F3. Falowniki klasy E i EF2 przebadano również przy częstotliwości pracy 16 MHz. Stosując specjalizowany tranzystor MOSFET typu DE375-102N10A, uzyskano odpowiednio: sprawności drenowe 88%, 91%, sprawności całkowite 86%, 89% oraz moce wyjściowe 800 W, 970 W. Praca zawiera również zestawienie ważniejszych określeń i terminów oraz dodatek, w którym zamieszczono szczegółowy opis modeli falowników klasy E, EF2 i E/F3 w programie Matlab.
EN
Power electronic, resonant Class E inverters and problems concerning their power capabilities are the subject of the work. The main aim is to carefully analyze the possibilities of increasing the output power and efficiency of a Class E inverter by improving the utilization of transistor parameters. With this end in view, a proper theoretical analysis and verifying laboratory research have been applied. The theoretical analysis has been carried out on the assumption that the transistor parameters are constant and conduction power losses dominate the rest of transistor power losses. At the beginning of the work, the state of the art of the subject was presented (Chapter 2). Next, the static and dynamic properties of power MOSFET transistors were described, which are particularly important when the transistors are used in Class E inverters (Chapter 3). The transistor parameters limiting efficiency and output power of inverters were indicated. In order to compare the power capabilities of Class E inverters and to maximize their efficiency, the following factors were defined: drain efficiency tjD, overall efficiency tj, factor of transistor installed power kui, and modified power output capability CPO (Chapter 4). It was shown, that the shape of the transistor voltage and current waveforms (the values of factor kui) determines the efficiency and the output power of resonant inverters. In the next part of the work, the terminology concerning Class E inverters (Chapter 5) was explained and arranged. Moreover, the systematic overview and the extended comparison of some properties of Class E inverters were carried out (Chapter 7). A new, generalized definition of Class E circuits was proposed, including in it as a fundamental condition maximum softswitching of a switch (a transistor, a thirstier or a diode). The known classes of circuits were grouped into basic, inverse, sub-, and mixed classes, taking into account their specific properties and nomenclature. Next, the correlation between selected parameters of the Class E inverter and its operation mode (optimum, suboptimum or non-optimum operation) was explained. There were also shown some possible and useful or totally useless modes of the optimum operation of the Class E inverter. In order to evaluate the power capabilities of different resonant inverters, all members of the Class E inverter family, Class E2 and EfF inverters, and several well-known Class DE, D, and D"1 inverters were compared in this regard. The required values of their parameters were computed by means of the computer models of the inverters. These models based on the state equations and their solutions using the method of matrix exponential in the Matlab program (Chapter 6, Appendix). The detailed analysis of the Class E inerter properties as a function of its parameters proved (Chapter 8), that a small increase in the efficiency and a few percent increase in the output power of the inverter can be obtained by applying its limited non-optimum operation, decreasing a transistor on-duty cycle or adding a differential capacitor in a symmetric inverter. Therefore, there were continued the further explorations of different, more effective methods to improve the power capabilities of a Class E inverter. The more beneficial shape of the transistor voltage and current waveforms, the higher efficiency and output power are obtained in Class EF2 and E/F3 inverters (Chapter 9). These inverters can be created from any Class E inverter. With this aim in view, an additional, series resonant circuit should be connected in parallel with the transistor and the inverter parameters should be properly adjusted. In the Class EF2 inverter this circuit resonates approximately at the second harmonic, and in the Class E/F3 inverter at the third harmonic. In both inverters the transistor is maximally soft-switched, which is typical of Class E circuits. Basing on the analysis of the properties of the Class EF2 and E/F3 inverters, it was found that the maximum increase in their output powers was approximately equal to 43% and 25%, respectively, in comparison with the Class E inverter performance. These results were obtained keeping the same transistor parameters for all the inverters. Next, the analysis of the properties of the Class E, EF2, and E/F3 inverters was continued. Some aspects of the influence of changing parameters on their properties were presented and discussed. In the last part of the work, selected results of the theoretical analysis were confirmed experimentally (Chapter 11). The laboratory Class E, EF2, and E/F3 inverters were designed and tested at the operating frequency of l MHz. During the measurements, the power losses (6.5 W) and the peak voltage (455 V) of a SPP20N65C3 MOSFET transistor were approximately kept at the constant level. The following results were obtained for the Class E, EF2, and E/F3 inverters, respectively: drain efficiency of 96.7%, 97.1%, 97.5%, overall efficiency of 96.1%, 96.7%, 97.0%, and output power of 365.3 W, 525.3 W, 448.0 W. The ratios of the output powers of the Class EF2 and E/F3 inverters to the Class E output power were equal to l .44 and l .23, respectively. The computer models of the Class E, EF2, and E/F3 inverters were successfully verified by comparing the results of their calculations and the measurements of the laboratory inverters. The Class E and EF2 inverters were also tested at the operating frequency of 16 MHz. Applying as a switching device a DE375-102N10A MOSFET transistor, the following results were obtained, respectively: drain efficiency of 88%, 91%, overall efficiency of 86%, 89%, and output power of 800 W, 970 W. The work also includes a set of relevant definitions and terms, and the appendix, where the computer models of the Class E, EF2, and E/F3 inverters in the Matlab program were detailed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.