Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 25

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  suspended particles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Clogging problem has become one of the key problems restricting the mining efficiency of in-situ leaching of uranium, and the related research on the law and mechanism of physical clogging has not been reported. In order to identify and understand the complicated law and mechanism, experimental device is established to simulate the physical clogging caused by suspended particles in the uranium process, the physical clogging law and mechanism under different concentrations and velocity of flow are studied. The experimental results show that with the concentration of suspended particles increasing from 100, 200, 300 to 400 mg/L, the permeability of porous media gradually decreases, and the clogging phenomenon becomes more and more obvious. When the size of suspended particles is small and the velocity is 15 mL/min, the porous medium will not appear clogging, while the velocity is 25mL/min, the whole porous medium will slowly appear internal deposition clogging. When the size of suspended solids is larger and the flow rate is 9, 12, 15mL/min, the higher the velocity, the faster the clogging will be, and backwash can alleviate the surface clogging but cannot change the final clogging result. According to the experiment and actual situation, the physical clogging in in-situ leaching of uranium is mainly surface clogging and filter clogging.
EN
The thermal instability of a couple-stress Rivlin-Ericksen ferromagnetic fluid with varying gravity field, suspended particles, rotation and magnetic field flowing through a porous medium is investigated. The dispersion relation has been developed and solved analytically using the normal mode approach and linear stability theory. The effect of suspended particles, rotation, couple stress, permeability and magnetic field on the fluid layer has been investigated. For stationary conventions, it is found that suspended particles always have a destabilizing effect for λ>0 and a stabilizing effect for λ<0 and couple-stress, magnetic field and permeability of the medium have a stabilizing effect on the thermal instability under certain conditions. In the absence of the rotation couple-stress has a stabilizing effect if λ >0 and a destabilizing effect if λ<0. Rotation has a stabilizing effect if λ >0 and a destabilizing effect if λ<0. In the absence of rotation permeability has a stabilizing effect if λ<0 and a destabilizing effect if λ>0. Magnetisation always has a stabilizing effect ( λ>0 or λ<0).
EN
Coal mining technologies always lead to tremendous environmental pollution of air, water resources, lands and biodiversity, both in regional and global scale. The level of environmental safety and ecological quality of the coal-mining region significantly decreases due to mining operations. In particular, mine waters with solid particles and dissolved chemicals are discharged to surface reservoirs. The suspended substances of mine waters, both in solid and dissolved forms, pose a high threat for the ecological and chemical balance of natural waters. Due to the ability to adsorb heavy metals, they play a significant role in the pollution of nearby water bodies. Chemicals not only change the quality of water bodies, but also pose an increased environmental risk to aquatic organisms and the health of the population. The purpose of the paper was to revise the mine water drainage technological scheme of the "Stepova" coal mine, as the subdivision of the "DTEK Pavlogradvugillya" Public Joint-Stock Company (Ukraine), and justify the technical considerations concerning implementation of a horizontal settling tank with unique design. It is justified that such mechanical treatment facility with vertical perforated partitions will significantly improve the overall water quality and provide further treatment in the storage pond. The modeling of the mine water purification process for the conditions of the "Stepova" coal mine was carried out due to the investigation of the kinetics of suspended particles precipitation simulated under laboratory conditions. The obtained dependences allow selecting the most optimal design and technological parameters of the proposed settling tank of advanced design. The values of the expected technological parameters of the proposed settling tank were determined, namely the predicted value of mine water purification efficiency, approximate depth of particles sedimentation in the point of treated water removal from the settling tank, and the hydraulic size of suspended solids. It was established that the implementation of the proposed technological scheme of mine water purification will reduce the concentration of suspended solids to the normative concentrations allowed for discharge into surface water bodies.
EN
In this paper, triple diffusive convection in a Rivlin-Ericksen fluid layer, which is permeated with suspended particles in the porous medium under the effect of compressibility and variable gravity, is investigated. Linear stability theory and normal mode analysis have been used to study the problem under consideration. It is observed that, for stationary convection, suspended particles, compressibility and medium permeability have destabilizing/stabilizing effects under certain conditions. The variable gravity parameter destabilizes the system whereas stable solute gradients have a stabilizing effect.
EN
The thermosolutal stability of a layer of the Rivlin-Ericksen fluid in a porous medium is considered under varying gravity conditions. It is found that for stationary convection, medium permeability and suspended particles have a destabilizing/stabilizing effect when gravity increases/decreases. The stable solute gradient has a stabilizing effect on the system.
EN
The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability characteristics. Sufficient conditions for the avoidance of overstability are also obtained.
EN
The instability of plane interface between two superposed Rivlin-Ericksen elastico-viscous fluids saturated through a porous medium has been studied to include the suspended (dust) particles effect. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like Newtonian fluids. It found that for a potentially stable arrangement the Rivlin-Ericksen elastico-viscous fluid of different permeabilities in the presence of suspended particles in a porous medium is stable, whereas in a potentially unstable case instability of the system occurs. In the presence of a magnetic field for a potentially stable arrangement the system is always stable and for the potentially unstable arrangement, the magnetic field succeeds in stabilizing certain wave-number band which was unstable in the absence of the magnetic field.
EN
Rayleigh-Taylor instability of two superposed Walters’ B has elastico-viscous fluids in a uniform magnetic field through a porous medium with different permeability been studied to include the suspended (dust) particles effect. Using normal mode technique a dispersion relation has been derived. The stability analysis has been carried out. The magnetic field stabilizes the unstable configuration for the wave number band K > K* in chich the system is unstable in the absence of the magnetic field. It is also found that for a potential stable arrangement for Walters B’ elastico-viscous fluids of different permeabilities in the presence of suspended particles through a porous medium the system is stable, whereas in the potentially unstable case instability of the system occurs.
EN
In this paper, the thermal instability of compressible Walters’ (Model B′) rotating fluid permeated with suspended particles (fine dust) in porous medium in hydromagnetics is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection, Walters’ (Model B′) elastico-viscous fluid behaves like an ordinary Newtonian fluid and it is observed that rotation has stabilizing effect, suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.
EN
Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.
EN
The effect of Hall currents and suspended dusty particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico viscous fluid in a porous medium is considered. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For the case of stationary convection, Hall currents and suspended particles are found to have destabilizing effects whereas compressibility and magnetic field have stabilizing effects on the system. The medium permeability, however, has stabilizing and destabilizing effects on thermal instability in contrast to its destabilizing effect in the absence of the magnetic field. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers are depicted graphically. The magnetic field, Hall currents and viscoelasticity parameter are found to introduce oscillatory modes in the systems, which did not exist in the absence of these parameters.
EN
This paper deals with the theoretical investigation of the effect of Hall currents and suspended particles on the thermal stability of a ferromagnetic fluid heated from below. For a fluid layer between two free boundaries, an exact solution is obtained using a linearized stability theory and normal mode analysis. A dispersion relation governing the effects of suspended particles and Hall currents is derived. For the case of stationary convection, it is found that the magnetic field has a stabilizing effect, whereas the suspended particles and Hall currents are found to have a destabilizing effect on the system. The critical Rayleigh numbers and wave numbers of the associated disturbances for the onset of stability as stationary convection are obtained. The principle of exchange of stabilities is not valid for the problem under consideration, whereas in the absence of Hall currents (hence magnetic field), it is valid under certain conditions.
EN
In the paper we consider thermal instability of a rotating Rivlin-Ericksen viscoelastic fluid in the presence of suspended particles in a porous medium, the effect of magnetic field with varying gravity field are also studied. It is found that for stationary convection, a Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid while the magnetic field has both stabilizing and destabilizing effect on the system. Other different aspects affecting stability are also considered.
EN
The effect of suspended particles, magnetic field, magnetization and rotation on the thermal stability of a ferromagnetic fluid heated from below is considered. Using a linearized stability theory and normal mode analysis for a fluid layer between two free boundaries, an exact solution is obtained. A dispersion relation governing the effects of suspended particles, magnetic field, magnetization and rotation is derived. For the case of stationary convection, it is found that a suspended particle has a destabilizing effect whereas rotation and magnetization have a stabilizing effect on the system. The magnetic field has a stabilizing effect on the system under certain conditions. The effects of various parameters on the thermal stability are depicted graphically also and the results are in agreement with analytical solutions. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid heated from below in the absence of rotation and the magnetic field. The oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence.
EN
The effect of rotation and suspended particles on the stability of an incompressible Walters�f (model B�Ś) fluid heated from below under a variable gravity field in a porous medium is considered. By applying a normal mode analysis method, the dispersion relation has been derived and solved numerically. It is observed that the rotation, gravity field, suspended par- ticles, and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation has a stabilizing effect and suspended particles are found to have a destabilizing effect on the system, whereas the medium permeability has a stabilizing or destabilizing effect on the system under certain conditions. The effect of rotation, suspended particles, and medium permeability has also been shown graphically.
PL
Główne zanieczyszczenie ścieków opadowych stanowi zawiesina, która z reguły jest nośnikiem większości innych substancji występujących w spływach opadowych. Ładunek zawiesiny odprowadzany do środowiska wodnego jest regulowany prawem. W praktyce inżynierskiej do usuwania zawiesiny ze ścieków opadowych z powodzeniem można wykorzystać urządzenia z ruchem wirowym np. osadniki wirowe, przelewy o specjalnej konstrukcji wykazujące przewagę nad tradycyjnymi osadnikami poziomymi.
EN
The main type of polution in stormwater sewage are suspended particles which tend to carry most of other substances present in stormwater. The suspended particle load transported to the hydrosphere is subject to legal regulations. In engineering practice, suspended particles are success-fully removed from sewage with the application of swirl chamber eqipment, e.g. whirl sediment traps and specially constructed flow control devices, operating more efficiently than traditional horizontal traps.
EN
The thermal instability of a layer of a Rivlin-Ericksen elastico-viscous fluid permeated with suspended particles in a porous medium acted on by a uniform magnetic field is considered. For stationary convection, the Rivlin-Ericksen elastico-viscous field behaves like a Newtonian fluid. The magnetic field is found to have a stabilizing effect, whereas suspended particles and medium permeability have a destabilizing effect for the case of stationary convection. The magnetic field introduces oscillatory modes in the systems, which were non-existent in its absence.
EN
Thermal stability of a couple-stress fluid in the presence of suspended particles, magnetic field and rotation is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, it is found that suspended particles have a destabilizing effect whereas rotation has a stabilizing effect. The magnetic field and couple-stresses have a stabilizing effect under certain conditions. In the absence of rotation, couple-stresses and magnetic field have a stabilizing effect on the system. It is found that the principle of exchange of stabilities is satisfied in the absence of the magnetic field.
EN
A compressible, electrically conducting Walters'B' elastico-viscous fluid heated from below in the presence of a magnetic field and rotation is considered. At stationary convection, Walters' (Model B') elastico-viscous fluid behaves like a Newtonian fluid and compressibility, rotation are found to have a stabilizing effect whereas the suspended particles have a destabilizing effect on the thermal convection and magnetic field has a stabilizing effect under certain conditions. The presence of magnetic field and rotation introduces oscillatory modes in the system which were non-existent in their absence. Graphs have also been plotted by giving some numerical values to the parameters.
20
Content available remote Effect of suspended particles and rotation on thermal instability of ferrofluids
EN
This paper deals with the theoretical investigation of the effect of suspended particles on a rotating layer of a ferromagnetic fluid heated from below. For a fluid layer between two free boundaries, an exact solution is obtained using a linearized stability theory and normal mode analysis. For the case of stationary convection, it is found that suspended particles have a destabilizing effect, whereas rotation has a stabilizing effect on the onset of instability. The principle of exchange of stabilities is not valid for the problem under consideration, whereas in the absence of rotation it is valid under certain condition.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.