Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  surface deflection
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Powierzchnia jeziorka spawalniczego może zawierać dane wystarczające do wyznaczenia głębokości wtopienia spoiny. W badaniach użyto szybkostrzelnego systemu wizyjnego z kamerą do rejestracji obrazu powierzchni jeziorka spawalniczego podczas spawania łukowego elektrodą topliwą w osłonie gazu (GMAW lub MIG/MAG). Aby wyliczyć ugięcie ciśnieniem łuku powierzchni jeziorka spawalniczego z uzyskanego obrazu zaproponowano procedurę kalibracji, która umożliwiłaby określenie parametrów do przeprowadzenia obliczeń. Ustalono parametry spawania do wykonania serii eksperymentów spawania prądem impulsowym metodą MIG/MAG. Modelowanie z użyciem danych eksperymentalnych wykazało, że zmiana ugięcia powierzchni jeziorka spawalniczego w fazie prądu impulsu może być wykorzystana do przewidywania głębokości wtopienia spoiny z wystarczającą dokładnością. Bezpośrednie zastosowanie tych wyników komplikuje jednak konieczność wykorzystania systemu wizyjnego. Aby znaleźć metodę, którą można zastosować do monitorowania wtopienia spoiny przy użyciu sygnałów łatwych do zmierzenia w warunkach produkcyjnych, przeanalizowano potencjalny związek pomiędzy zmianą ugięcia powierzchni jeziorka spawalniczego a napięciem łuku. Analiza wykazała, że zmiana napięcia łuku w fazie prądu impulsu może precyzyjnie odzwierciedlać zmianę wartości ugięcia powierzchni jeziorka w fazie prądu impulsu. W związku z tym, proponuje się określanie wtopienia spoiny ze zmiany napięcia łuku w fazie prądu impulsu. Wyniki modelowania pokazują, że zmiana napięcia łuku w fazie prądu impulsu może umożliwiać dokładne przewidywanie głębokości wtopienia podczas spawania impulsowego MIG/MAG.
EN
The weld pool surface may contain sufficient information to determine weld penetration. In this study, a high- speed camera-based vision system was used to image the weld pool surface during gas metal arc welding (GMAW).To calculate the depth of the weld pool surface from the acquired image, a calibration procedure is proposed to determine the parameters in the calculation equation. Welding parameters were designed to conduct a series of pulsed GMAW (GMAW-P) experiments. Modeling using experimental data shows that the change of the weld pool surface depth during the peak current period can predict the depth of the weld penetration with adequate accuracy. However, a direct application of this result is complicated by the need for a vision system. To find a method that can be used to monitor the weld penetration using signals that are easily measurable in manufacturing facilities, a possible relationship between a change in weld pool surface depth and a change in arc voltage was analyzed. The analysis suggested that the change in arc voltage during the peak current period may reflect accurately the change in weld pool surface depth during the peak current period. As a result, it is proposed that the depth of the weld penetration be determined from the change in arc voltage during the peak current period. The modeling result shows that the change in arc voltage during peak current can indeed provide an accurate prediction for the depth of the weld penetration during GMAW-P.
EN
Purpose: Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. Design/methodology/approach: Numerical simulation of process was performed by the use of finite element method, paying attention particularly to the thickness distribution and surface deflection of the drawn outer panel and the outline flange during forming. Simulation procedures of automotive outer panel as large size shape are as follows; 1) Acquisition of drawing parts 2) Laser scanning for generating CAD model 3) CAD model generation 4) Simulation model operation 5) Simulation execution and analyses of simulation results. Findings: The development of automation in stamping and assembly processes of automobile manufacture will require an excellent surface quality of formed panels and also their accurate dimensions. Practical implications: The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigid constraints on final shape and dimensional tolerances as well as external appearance quality of outer panels. The numerical simulation makes it possible to design and optimize the total process to a level, which can't be reached by traditional theoretical and experimental methods. Originality/value: Computer simulations can be used to determine the influence from variations in material properties and process parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.