Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  superheated steam
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper the explosive and fire properties of energy willow dust were experimentally determined before and after drying with superheated steam at temperatures of 120°C, 140°C, 160°C and 180°C. The conducted research has shown that operating parameters of the installation of drying with superheated steam of the energy willow biomass have a decisive impact on the fire-explosive characteristics of the dust produced. The results indicate that the higher the drying temperature, the stronger the probability of ignition of the willow dust cloud, the faster the flame propagation and the higher the explosion intensity. Although the superheated steam drying installation for energy willow biomass is considered to be safe, the probability of occurrence of a fire or explosion events of the biomass dust-air mixture is likely.
PL
W artykule wyznaczono eksperymentalnie właściwości wybuchowe i pożarowe pyłu wierzby energetycznej przed i po suszeniu parą przegrzaną w temperaturach 120°C, 140°C, 160°C i 180°C. Na podstawie przeprowadzonych badań stwierdzono, że parametry pracy instalacji suszenia parą przegrzaną biomasy wierzby energetycznej mają decydujący wpływ na charakterystykę pożarowo- -wybuchową powstającego pyłu. Wyniki wskazują, że im wyższa temperatura suszenia, tym większe prawdopodobieństwo zapłonu chmury pyłu wierzby, tym szybsze rozprzestrzenianie się płomienia i większa intensywność wybuchu. Pomimo, że instalacja suszenia parą przegrzaną biomasy wierzby energetycznej jest uważana za bezpieczną to prawdopodobieństwo wystąpienia zdarzeń pożarowych lub wybuchowych mieszaniny pyłowo-powietrznej biomasy jest prawdopodobne.
2
Content available Pary
PL
Wstęp i cele: W pracy opisano proces wytwarzania pary, parametry pary mokrej, parę przegrzaną, oraz wykresy graniczne pary. Celem pracy jest opis graficznego przebiegu temperatury substancji przy izobarycznym podgrzewaniu, podanie charakterystyk pary mokrej i pary przegrzanej oraz opis graficzny pary wodnej. Materiał i metody: Materiał stanowią źródła z literatury z zakresu termodynamiki. W pracy zastosowano metodę analizy teoretycznej. Wyniki: Rezultatem analizy jest opracowanie analityczne procesu wytwarzania pary, parametrów pary mokrej (wilgotnej) oraz przedstawienie graficzne wykresów granicznych pary. Wnioski: W czasie podgrzewania cieczy przy wyższym ciśnieniu, temperatura nasycenia jest wyższa. Czas parowania cieczy zmniejsza się ze wzrostem ciśnienia. Przy wyższym ciśnieniu do odparowania cieczy wymagana jest mniejsza ilość ciepła. Proces izobarycznego parowania jest również procesem izotermicznym. Wartości parametrów termodynamicznych pary mokrej zależą więc od stopnia suchości.
EN
Introduction and aim: The work describes the steam generation process, wet steam parameters, superheated steam, and steam limit graphs. The aim of the work is to describe the graphic temperature course of the substance during isobaric heating, to provide the characteristics of wet steam and superheated steam and a graphic description of the water vapor. Material and methods: Material covers some sources based on the literature in the field of thermodynamics. The method of theoretical analysis has been shown in the paper. Results: The result of the analysis is the analytical development of the steam generation process, the parameters of the wet (damp) steam and the graphic representation of the steam boundary graphs. Conclusion: When the fluid is heated at a higher pressure, the saturation temperature is higher. The evaporation time of the fluid decreases with increasing pressure. At higher pressure, less heat is needed to evaporate the fluid. The process of isobaric evaporation is also an isothermal process. The values of thermodynamic parameters of wet steam depend on the degree of dryness.
EN
Sewage sludge was dried in a rotary drum dryer under superheated steam. Particle size and moisture content were shown to have significant influences on sticking and agglomeration of the materials. Pouring partially dried sludge (70–80% moisture content, wet basis) directly into the screw feeder of the drum dryer resulted in a significant sticking to the surface of the drum and the final particle size of the product was greater than 100 mm in diameter. The moisture content of this product was slightly less than its initial value. To overcome this issue, the sludge was mixed with lignite at variety ratios and then chopped before being introduced to the feeding screw. It was found that mixing the sludge with lignite and then sieving the chopped materials through a four millimetre mesh sieve was the key to solve this issue. This technique significantly reduced both stickiness and agglomeration of the material. Also, this enabled for a significant reduction in moisture content of the final product.
PL
W pracy przedstawiono propozycję procesu pozwalającego na ograniczenie emisji rtęci ze spalania węgla w kotłach fluidalnych. Proces ten zakłada obróbkę termiczną paliwa pozwalającą na usunięcie z węgla rtęci w takiej ilości, aby zapewnić wymagany poziom emisji po jego spaleniu. Obróbka termiczna pozwala także na usunięcie wilgoci z paliwa oraz częściowe uwolnienie z niego części lotnych. Gazy wytlewne zawierające Hg kierowane są do chłodnic celem ich ochłodzenia i wykroplenia wilgoci, a następnie do absorbera pozwalającego na związanie rtęci. Oczyszczone gazy zawracane są do komory spalania. Proces niskotemperaturowej obróbki termicznej paliwa zakłada wykorzystanie pary przegrzanej jako nośnika ciepla ze względu na jej dostępność w układzie bloku parowego oraz na bezpieczeństwo prowadzenia procesu. W pracy zaproponowano koncepcję budowy układu do niskotemperaturowej obróbki termicznej paliwa opartej na technologii fluidalnej. Użycie pary przegrzanej pozwala na realizację procesu oraz odzysk ciepła skraplania pary na potrzeby obiegu cieplnego bloku. Zaproponowana technologia wymaga właściwej temperatury procesu ze względu na zawartość rtęci i jej formy w węglu w celu uzyskania wymaganego poziomu redukcji emisji rtęci.
EN
The paper proposes a process for limiting mercury emissions from coal combustion in fluidized bed boilers. This process involves a thermal treatment which allow to remove the mercury from coal in an amount to provide the required level of emissions after combustion. Thermal treatment also allows you to remove moisture from the fuel and the partial release of the volatiles matter. Exhaust gases containing Hg were directed to coolers for their cool and condense the moisture, and then to the absorber to allow the envolve the mercury. Clean gases were returned to the combustion chamber. Low-temperature heat treatment process involves the use of superheated steam as the heat carrier due to its availability in the system block and the steam safety considerations of the process. The paper proposes the concept of the system for low-temperature heat treatment of fuel based on fluidized bed technology. The use of superheated steam allows for the implementation of the process and condensing heat recovery steam cycle for the needs of the block. The proposed technology requires proper temperature process due to the mercury content and its form in the coal in order to achieve the desired reduction inmercury emissions.
EN
The main aim of this work was determine the corrosion resistance of the selected materials used in the produce of intake manifold of the combustion engine. Another aspect of the research was to carry out the preliminary test of the Diesel engine, powered by alternative fuels (water-fuel). The results allowed to inspire the great optimism due to the low level of technical elements used. The application of simple methods and equipment allowed to reduction of the fuel consumption. In this way, reduce the toxic emission. In other side we observed decrease hardness and resistance of wear.
PL
Celem pracy było określenie odporności na korozję wybranych materiałów wykorzystywanych do wytwarzania poszczególnych części silnika spalinowego. Drugim aspektem było przeprowadzenie wstępnych badań eksploatacyjnych silnika spalinowego o zapłonie samoczynnym, zasilanego paliwami alternatywnymi (woda, alkohol). Wyniki badań napawają dużym optymizmem z uwagi na niski poziom techniczny użytych elementów, chociaż z drugiej strony zmniejszenie twardości spowoduje spadek odporności na zużycie.
PL
Przemiany fazowe czynników chłodniczych umożliwiają intensywną wymianę ciepła w parownikach i skraplaczach. Procesy wrzenia pozwalają uzyskiwać efekt chłodzenia, a procesy skraplania efekt grzania otoczenia przez czynnik podlegający przemianie fazowej. Oba te procesy są niezbędne w klasycznej instalacji chłodniczej i pozwalają zamknąć realizowany obieg termodynamiczny w urządzeniu. Wrzenie może zachodzić przy określonym ciśnieniu, gdy temperatura cieczy osiągnie temperaturę wyższą od temperatury nasycenia, a skraplanie, gdy temperatura pary osiągnie temperaturę niższą od temperatury nasycenia. Podczas przemian fazowych następuje zmiana starej fazy w nową, o ile zostaną spełnione ściśle określone warunki. Dla procesu skraplania warunkami tymi są: istnienie gradientu temperatury na ściance kanału oraz występowanie nowej fazy, czyli zarodków cieczy. Powstające skropliny mogą tworzyć ciągłą warstwę na powierzchni (skraplanie błonowe) lub też gromadzić się na niej w postaci pojedynczych kropel (skraplanie kroplowe). W rurach skraplaczy urządzeń chłodniczych występuje z reguły skraplanie błonowe, podczas którego powstaje film cieczy na powierzchni wewnętrznej kanału. Nie można jednak wykluczyć warunków powstawania skraplania kroplowego lub mieszanego (w przypadku skraplania czynników o dużym stężeniu rozpuszczonych w nich olejów). Przepływ skraplającego się czynnika chłodniczego ograniczony jest, poza tym, ściankami kanału. Ruch powstającego filmu kondensatu może mieć charakter laminarny lub turbulentny. Mechanizm tego procesu jest odmienny od innych rodzajów skraplania (na ściance płaskiej pionowej, na zewnętrznej powierzchni rury), ponieważ istnieją określone i ograniczone warunki odpływu powstającego kondensatu [9, 10, 13, 15].
EN
Results of experimental investigations of the condensation of the R404A refrigerant in the coil pipe of a model condenser were presented. It was demonstrated that the condensation process which begins locally in the superheated vapor area, after the occurrence of a specific overcooling of the vapor on the channel wall, develops further in a two-phase system. On the basis of the analysis conducted, a criterion was developed which permits the determination of the starting point of condensation in the PPS flow. The knowledge of this criterion supplements description of the heat exchange and may be useful for the designing of refrigeration condensers. It was further demonstrated that in the superheated vapor area, there is a gradual increase of heat transfer coefficient ?x, which constitutes an evidence of the local condensation of the refrigerant start. There is a justifiable requirement for the continuation of research in this area. In condensers used in steam, compressor cooling circuits there is a dis-advantageous in terms of heat exchange zone of cooling of superheated steam. In some conditions, phenomenon of condensation of refrigerant vapour occurs, initiated locally in the zone of superheated steam. The number of publications presenting this problem is very small. Analysis of heat transfer presented in the paper makes possible to determine the beginning point of PPS in condensing area of cooling of superheated steam zone in the condenser. Methodology of identification of the beginning of condensation in the condensation zone of area of superheated steam, verified with experimental research, presented by the authors, may be applied in the calculations of the dimensions of condensers (or so called precondensers) used in refrigeration systems. Investigations in this area are continued.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.