Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  super-elastic behaviour
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nowadays, the use of smart materials in structures is a major concern to structural engineers. The act of benefiting from numerous advantages of these materials is the main objective of researches and studies focused on seismic and structural engineering. In the present study, in addition to the development of finite element models of several steel frames using ABAQUS software, the effect of shape memory alloys (SMAs) on superelastic behavior and the various types of eccentric braces will be checked. Moreover, it was observed that the use of SMAs within various types of bracing systems of steel frames leads to a decrease in the reduction factor of the frames. Also, the eccentric bracing in which SMAs are utilized in the middle of bracing led to the highest effect on reduction of lateral drift of the frames and decrease of reduction factor. The obtained results indicated that the application of smart materials led to increasing of strain energy and base shear of the first plastic hinge, which is followed by a decrease in the reduction factor of the frame.
EN
Purpose: The effect of shape memory and super-elastic property are two exclusive features in shape memory alloys. To exploit the properties of shape memory effect, alloy needs to be heated, but super-elastic property in these alloys will be proposed automatically in case suitable conditions. Design/methodology/approach: In this study, with simulating short-square reinforced concrete column experimental model in software ANSYS and in multi-level and increasing process, longitudinal armatures with shape memory alloy material will replace steel armatures with super-elastic behavior will be investigated with making shape memory alloy kind as variable (copper and nickel-based alloys), the opportunity of super-elastic property emergence in these alloys and with playing the role of longitudinal armature in reinforced concrete column. Findings: It can generally be said that memory alloy will achieve to goal that its created stresses will be located among stress of beginning direct phase and stress of finishing direct phase and whatever these stresses are closer to finishing direct phase, alloy will have more efficiency to propose its super-elastic property. Research limitations/implications: In case of using shape memory alloys as longitudinal armatures in reinforced concrete structures considering them buried in concrete, exploitation of shape memory property will have its particular problems that these problems won’t happen about the super-elastic property. Considering the high rate of strain capacity (3 to 8%) in memory alloys with super-elastic behaviour and the limitation of this capacity in concrete, conditions are necessary to be prepared in a way that memory alloy has the opportunity to propose super-elastic property. Originality/value: Except shape memory alloy that has proposing super-elastic behaviour in concrete structures and is investigated in this study, other factors such as the rate of resistance characteristic of pressure of concrete and mechanical characteristics of steel armatures are effective in this case as well that can be good subjects for investigation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.