Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  suction/injection
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper examined the role of suction/injection on time-dependent electromagnetohydrodynamics (EMHD) natural (free) convection flow in a vertical microchannel with electroosmotic effect. With the aid of Laplace transformation method, the governing energy and momentum equations are converted from partial differential equation (PDE) into ordinary differential equation (ODE) to obtain fluid temperature and velocity in Laplace domain. The semi-analytical solutions of the velocity profile and temperature distribution have been derived using the Riemann sum approximation. After which a MATLAB program was written to study the effects of Prandlt number Pr, Hartmann number Ha, electric field strength on x and z directions (Ex and Sz) and Grashof number Gr in fluid velocity, temperature, skin-friction and mass flow rate in terms of line graphs. Result shows the role of suction/injection parameter alters the temperature distribution and velocity profile, so also how effective the governing parameters contribute to the flow formation.
EN
The current study aims to explore stagnation spot flow of a micropolar fluid about a plain linear exponentially expanding penetrable surface in the incidence of radiation and in-house heat production/immersion. Through similarity mapping, the mathematical modeling statements are transformed to ODE's and numerical results are found by shooting techniques. The impact of varying physical constants on momentum, micro-rotation and temperature is demonstrated through graphs. The computed measures including shear, couple stress, mass transfer and the local surface heat flux with distinct measures of factors involved in this proposed problem are presented through a table.
EN
An unsteady flow formation in Couette motion of an electrically conducting fluid subject to transverse magnetic field has been analyzed in the presence of suction/injection through the porous plates when one of the porous plates is in ramped motion. It is assumed that the porous plates are uniformly permeable and the fluid is entering the flow region through one of the porous plates at same rate as it is leaving through the other porous plate. The resulting boundary value problem has been solved exactly under the assumption of a negligible induced magnetic field, external electric field and pressure gradient. Unified closed form expressions for the velocity field and skin-friction corresponding to the case of a magnetic field fixed relative to the fluid or to the moving porous plate have been presented. In order to highlight the impact of the ramp motion of the porous plate on the fluid flow, it has also been compared with Couette flow between porous plates when one of the porous plates has been set into an impulsive motion.
EN
The paper discusses a new analytical procedure for solving the non-linear boundary layer equation arising in a linear stretching sheet problem involving a Newtonian/non-Newtonian liquid. On using a technique akin to perturbation the problem gives rise to a system of non-linear governing differential equations that are solved exactly. An analytical expression is obtained for the stream function and velocity as a function of the stretching parameters. The Clairaut equation is obtained on consideration of consistency and its solution is shown to be that of the stretching sheet boundary layer equation. The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
EN
The effects of suction/injection and chemical reaction on mass transfer characteristics over a stretching surface subjected to three dimensional flows are studied. The governing boundary layer equations are transformed to ordinary differential equations containing the suction/injection parameter, stretching ratio parameter, concentration parameter, chemical reaction parameter, and Schmidt number. These equations are solved numerically. Concentration profiles are computed and discussed in details for various values of the different parameters.
EN
The effects of thermal radiation and suction/blowing on an axisymmetric flow and heat transfer of a micropolar fluid over a vertical slender cylinder are analyzed. The partial differential equations governing the flow and heat transfer have been transformed to ordinary differential equations by using similarity transformations which are then solved numerically. The numerical results are validated by favorable comparisons with previously published results. The cases of buoyancy-assisted flow, pure mixed convection, buoyancy opposed flow, permeable cylinder, impermeable cylinder, Newtonian fluids and non-Newtonian fluids as well as the case which represents concentrated particle flow in which the microelements close to the wall surface are unable to rotate and the case which indicates vanishing of an antisymmetric part of the stress tensor are considered. A parametric study of the governing parameters, namely the buoyancy parameter, suction/injection parameter, radiation parameter, vortex viscosity parameter, curvature parameter and microgyration boundary conditions parameter on the linear velocity, angular velocity and temperature as well as the wall stress, wall couple stress and the rate of heat transfer is conducted. A selected set of numerical results is presented graphically and discussed.
EN
Heat and momentum transfer in the case of a steady free convection flow along a semi-infinite vertical porous/non-porous plate in the presence of a uniform transverse magnetic field and uniform heat generation/absorption have been investigated. Non-similar solutions of the governing equations have been obtained by taking series expansions of stream function and temperature function. The resulting set of non-linear coupled ordinary differential equations with the appropriate boundary conditions has been solved numerically, using Newton's shooting technique. Numerical values of functions that correspond to the local wall shear stress and the rate of surface heat transfer are tabulated. The velocity function, temperature function, local skin-friction and local Nusselt number are shown graphically for various values of parameters involved and discussed in detail.
EN
A regular perturbation is presented to study the effect of heat and mass transfer on free convection flow with a uniform suction and injection over a cone in a micropolar fluid. The velocity, temperature, concentration and microrotation profiles were computed for various values of suction/injection, Schmidt number and micropolar parameters. The governing equations are first cast into a dimensionless form by a nonsimilar transformation and the resulting equations are then solved numerically by using the Runge-Kutta numerical integration, the procedure in conjunction with the shooting technique. The results indicate that as the micropolar parameter increases the wall couple stress, the shear stress, the Nusselt number and Sherwood number decrease with it. While the Shmidt number increases the shear stress, the wall couple stress and Nusselt number decrease, the opposite is true for the Sherwood number. The results are shown in figures and tables followed by a quantitative discussion.
EN
The effect of the Suction-Injection-Combination (SIC) on the onset of Rayleigh-Benard convection in suspensions is studied in a porous medium using the Rayleigh-Ritz technique. The critical eigenvalue is obtained for free-free, free-rigid and rigid-rigid boundary combinations with isothermal or adiabatic temperature condition. The microrotation of the suspended particles is assumed to vanish at the boundaries. The effect of the SIC on the critical eigenvalue is shown to be dependent on whether it is gravity-aligned or anti-gravity. The classical results on the effect of suspended particles on convection is found to be unaltered by the SIC. The problem has industrial applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.