VOC emission has recently become a challenge for environmental protection. Catalytic combustion seems a promising method of VOC removal, however, there are still more specific demands concerning the process. The reactor design has to assure enhanced transfer properties accompanied by low flow resistance to reduce the pumping costs. Neither the packed beds nor the classic ceramic monoliths are able to fulfil the requirements. To solve the problem we propose a wire gauze structure composed of several gauze sheets staked. A number of mass transfer and flow resistance experiments were performed for two gauze types and correlations were derived for the Sherwood number and the friction factor. The results were found to be in a reasonable agreement with the literature available. The studied gauze structures were compared with a classic monolith for the assumed case study. The calculated length of the gauze structured reactor was significantly shorter, up to ten times, when compared with a classic ceramic monolith, but the pressure drop was higher.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.