Strong sequences were introduced by Efimov in the 60s’ of the last century as a useful method for proving well known theorems on dyadic spaces i.e. continuous images of the Cantor cube. The aim of this paper is to show relations between the cardinal invariant associated with strong sequences and well known invariants of the continuum.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.