Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  strong alkaline water
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An eco-friendly manufacturing approach is important for the environment. Enhancing machining performances is not only required to improve product’s quality, time saving, and reduces costs; it is also contributed to the environmental protection efforts. Cooling is important aspect for obtaining this purpose. Therefore the benefits of Strong Alkaline Water (SAW) cooling method was assessed and compared with conventional wet cutting method. An experiment was performed at Nagaoka University of Technology machining centre. Three machine tools including a milling machine, a drilling machine and a turning machine were used. The study shows that using SAW for cooling is far more efficient than conventional cooling method. It reduces annual global warming potential by 72.95%, acidification potential 98.18%, ozone depletion potential 99.6%, smog formation potential 85.71% and human toxicity potential 42.86% compare with conventional method. The study concludes that besides inhibiting corrosion, prolonging tool life, improving surface roughness of final cutting and reducing energy usage, strong alkaline water cooling is an environmentally friendly approach and has positive impact on human health.
EN
Nowadays, eco-friendly manufacture has become common request in the manufacturing and production. The excessive electric power associated with the usage of large amount of oil for cooling and lubrication during machining can increase the CO2 emission which is considered as large problem for environment. On the other hand, the presence of the unwanted vibration during machine can affect the quality of production. The influence of immersed machine tool in strong alkaline water has been investigated in previous work for normal machine operation when no vibration occurred. In present research, the influence of immersed condition to the vibration of the bench lathe machine was investigated. Thermal deformations of the spindle when operating bench lathe coincide with machine resonances were also measured for evaluation of accuracy. The calculation of CO2 emission using immersed bench lathe machine was done by comparing with the conventional machining. It is concluded from the results that; (1) Excellent cooling efficiency can be achieved by using strong alkaline water added with microbubble, (2) Vibration of machine tool was reduced during immersed condition, (3) Thermal deformation of the bench lathe was very small despite no-forced cooling was used, (4) The large number of CO2 that released annually can be reduced by immersed of machine tool.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.