Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stroke lesion segmentation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Automated segmentation of chronic stroke lesion using efficient U-Net architecture
EN
Stroke is the most common neurological condition worldwide and causes various sequelae, such as motor impairment, cognitive deficit, and language problems. Typically, a radiologist segments the lesion directly. This is time-consuming and relies on the subjective perception of a specialist, so studies that automatically segment stroke lesions are very important in this regard. Although recent medical image segmentation studies have achieved great results using deep learning techniques, there are still many trainable parameters, and long-term dependence problems still exist. To solve these problems, we propose an efficient U-Net (eUNet) for segmenting chronic stroke lesions. The proposed e-UNet incorporates a depthwise convolution-based e-block designed to efficiently reduce the trainable parameters. A global-feature attention block (GA-block) improves segmentation performance by capturing global features between the encoder and decoder. The proposed e-UNet reduces the number of trainable parameters by 3.75 times compared to U-Net.We used the Anatomical Tracings of Lesions After Stroke (ATLAS) dataset to evaluate e-UNet. The lesions segmentation performance of the proposed e-UNet achieved 59.2%, 45.5%, 77.7%, 52.3%, and 52.3% in Dice, IoU, precision, and recall, respectively, for the test dataset (8694 2D images).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.