Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stream beds
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study focuses on the time-averaged turbulence characteristics over a highly spatially-heterogeneous gravel-bed. The timeaveraged streamwise velocity, Reynolds shear and normal stresses, turbulent kinetic energy, higher-order moments of velocity fluctuations, length scales, and the turbulent bursting were measured over a gravel-bed with an array of larger gravels. It was observed that the turbulence characteristics do not vary significantly above the crest level of the array as compared to those below the array. The nondimensional streamwise velocity decreases considerably with a decrease in depth below the array. Below the array, the Reynolds shear stress (RSS) deviates from the gravity-law of RSS distributions. Turbulence intensities reduce below the crest level of the gravel-bed. The third-order moments of velocity fluctuations increase below the crest level of the gravel-bed and give a clear indication of sweeps as the predominating event which were further verified with the quadrant analysis plots. The turbulent length scales values change significantly below the crest level of the gravel-bed.
2
Content available remote Turbulence in mobile-bed streams
EN
This study is devoted to quantify the near-bed turbulence parameters in mobile-bed flows with bed-load transport. A reduction in near-bed velocity fluctuations due to the decrease of flow velocity relative to particle velocity of the transporting particles results in an excessive near-bed damping in Reynolds shear stress (RSS) distributions. The bed particles are associated with the momentum provided from the flow to maintain their motion overcoming the bed resistance. It leads to a reduction in RSS magnitude over the entire flow depth. In the logarithmic law, the von Karman coefficient decreases in presence of bed-load transport. The turbulent kinetic energy budget reveals that for the bed-load transport, the pressure energy diffusion rate near the bed changes sharply to a negative magnitude, implying a gain in turbulence production. According to the quadrant analysis, sweep events in mobile-bed flows are the principal mechanism of bed-load transport. The universal probability density functions for turbulence parameters given by Bose and Dey have been successfully applied in mobile-bed flows.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.