Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  strain concentration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study introduces a new definition of the strain-concentration factor (SNCF) of thick walled internally pressurized cylinders. The stress state has been considered in this new definition; i.e. triaxial and biaxial stress states for closed and open ends, respectively. Primarily, the curvature effect of the strain concentration has been studied here. To this end, the inner radius of the employed cylinders has been changed from 0.5 to 50.8 mm. On the other hand, the thickness has been kept constant at 16.7 mm. Moreover, the thickness has been fragmented to 37 elements to study the thickness effect for each case. The results show that the tangential (hoop) strain regularly spread over the whole thickness. It has been revealed that the maximum value of the tangential strain occurs on the inner surface of the cylinder. In particular, it rapidly decreases from a maximum value on the inner surface to reach its minimum value on the outer surface, which is nearly equal to the average value of hoop strain through the thickness. The results also demonstrate that tangential strain values decrease with the increase of the inner radius for any thickness. It is clear that the rate of decrease of the hoop strain changes abruptly with decreasing the inner radius of the cylinder. This led to localization of the strain concentration on the inner surface of the cylinder due to curvature, making the values of the strain concentration factor very high on the inner surface of the cylinder. In addition, the strain concentration factor decreases through the thickness of the cylinder from the inner to outer surfaces, and the rate of the decrease is increasing with a decreasing inner radius of the cylinder. The current results introduce the serious effect of the curvature on the strain concentration even if there are no irregularities in the cylinder.
EN
The paper presents the numerical simulations results of net section failure in tensioned angles. Angles are made of structural steel with nominal grade S235. Simulation takes into account ductile fracture initiation, by application of GursonTvergaard-Needleman (GTN) material model. Parametrical analysis of ultimate resistance was carried out. The finite elements analyses were conducted by ABAQUS computer program. Shear lag effect in considered joint was observed, as a non uniform tensile stress distribution in angles in the vicinity of a connection. Stress concentration areas and stress concentration factors have been predicted, both in elastic and ultimate behaviour of joint. Especially change of non-uniform stress distribution in net cross-section was observed, during increase of loading, until the ultimate resistance was reached.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.