Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stopy metalowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Purpose: of this paper is to compare some properties of Ti-Al and Ti-Nb alloys to investigate on the possibility to jointly employed them industrially. Ti-Al alloys have been proposed because they present challenging characteristics for high temperature purposes and β type Ti-Nb alloy has specific mechanical properties at room temperature. Ti-Al alloys are very attractive materials and represent one of the most important materials employed for aero jet engines. The most promising alloy belonging to the above mentioned classes are predominantly based on simultaneously presence of two phases, namely γ-TiAl (gamma titanium aluminides) and α2-Ti3Al both with a fully lamellar microstructure and could replace Ni-based superalloys in some high temperature applications in aerospace and automotive industries. The most important advantages of such alloys compared to some superalloys consist in their low density correlated to their superior efficiency in service and reduced gas emission. Design/methodology/approach: The Ti-Al alloy have been produced by gravity casting, using a vibrating furnace, while the Ti-Nb alloy samples have been realized by the cold crucible levitation melting (CCLM) casting technology. Microstructural and mechanical characterization have been performed. Findings: The microstructural analysis for the Ti-Al alloy reveals a fully-lamellar microstructure with alternate plates of α2-(Ti3Al) and γ-(TiAl) plates. The grains have an average size of about 200 μm. For the Ti-Nb based alloy only a β mono-phase has been detected. This alloy has a equiaxed microstructure with an average grain dimension of about 170 μm. The Ti-Nb alloy presents a high mechanical strength while on the contrary that of the Ti-Al has been deleteriously affected by the presence of large gas porosities. Superior hardness values have been reached with Ti-Al alloy, due to the presence of hard γ-TiAl. Practical implications: The most important implication is related to the transfer toward the proper choice of the correct parameters during manufacturing. Originality/value: Investigation on the influence of the elemental composition enriched by other elements and casting processes on the defect development, the microstructural characteristics and on the mechanical behaviour of the alloys.
2
Content available remote Microstructure investigations of cast Zn-Al alloys
EN
Purpose: The goal of he presented investigations was to evaluate to possibility of application of popular modifiers for chosen types of zinc alloys. The special aim of this work is to determine the influence of alloy modification on the crystallisation kinetics and microstructure of the cast zinc alloy. This research work presents also the investigation results of derivative thermoanalysis performed using the UMSA device. The material used for investigation was the ZnAl8Cu1 alloy. Design/methodology/approach: For phase determination there were used electron microscope techniques like SAD diffraction investigations which were carried out on the 200 kV transmission electron microscope. The UMSA (Universal Metallurgical Simulator and Analyser) device allows it to determine the specific melting process, influence of the cooling rate on the crystallization of phases and eutectics of the investigated alloys. Cooling rate influences the microstructure and properties of the investigated zinc cast alloys. Findings: Change of the crystallization kinetics allows it to produce materials with improved properties, which are obtained by: microstructure refinement, reduction or elimination of segregation. Research limitations/implications: The material was examined metallographically and analysed qualitatively using light and scanning electron microscope as well as the area mapping and point-wise EDS microanalysis. The performed investigation are discussed for the reason of an possible improvement of thermal and structural properties of the alloy. Practical implications: The investigated material can find its use in the foundry industry; an improvement of component quality depends mainly on better control over the production parameters. Originality/value: Investigations concerning the development of optimal chemical composition and production method of zinc-aluminium alloys with selected rare earth metals with improved properties compared to elements made of alloys with appliance of traditional methods, will contribute to a better understanding of the mechanisms influencing the improvement of functional properties of the new.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.