Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stop tytanu TI6AL4V
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography) of the surface of TiN+Ti2N+αTi(N) nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.
PL
Dyfuzyjne warstwy azotowane na tytanie i jego stopach są szeroko badane m. in. w aspekcie zastosowań na implanty kardiologiczne i kostne. Stąd też analizowany jest wpływ struktury składu fazowego, topografii i morfologii powierzchni na ich właściwości biologiczne. W artykule przedstawiono wyniki badań wpływu topografii (nanotopografii) powierzchni warstw azotowanych –TiN+Ti2N+αTi(N) wytwarzanych w niskotemperaturowej plazmie na stopie tytanu Ti6Al4V na adhezję płytek krwi i ich aglomeratów. Omówiono mikrostrukturę (TEM) wytwarzanych warstw i wykazano, że poprzez stan chropowatości powierzchni zewnętrznej strefy warstwy azotowanej – nanokrystalicznego azotku tytanu (TiN) można kształtować oddziaływanie płytek krwi z powierzchnią implantów tytanowych poddanych procesowi azotowania jarzeniowego.
EN
The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications) software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations
PL
Celem badań, opisanych w niniejszym artykule jest zaprezentowanie technologii selektywnego spiekania i topienia laserowego w celu wytworzenia metalowych scaffoldów z proszków: czystego tytanu oraz jego stopu Ti6Al4V. Techniką tą przy zastosowaniu odpowiednich warunków wytwarzania między innymi mocy lasera i wielkości plamki lasera wytworzono tytanowe scaffoldy o różnych własnościach i strukturze. Tego typu elementy mają za zadanie zastąpić brakujące fragmenty kości głównie kości szczękowo-twarzowych w procesie leczenia implantacyjnego. Wszystkie próbki do badań zaprojektowano w odpowiednio zintegrowanym z systemem SLS/SLM oprogramowaniem CAD/CAM (3D MARCARM ENGINEERING AutoFab, Software for Manufacturing Applications). Przy wykorzystaniu komórki bazowej o kształcie heksagonalnym zaprojektowano próbki do badań w kształcie sześcianu o wymiarach 10×10×10 mm. Tak zaprojektowane trójwymiarowe modele przetransportowano do oprogramowania maszyny gdzie rozpoczęto właściwy proces wytwarzania przyrostowego. Wykonane w technologii spiekania laserowego próbki poddano obróbce chemicznej polegającej na trawieniu powierzchni scaffoldów, w różnych ośrodkach chemicznych. Trawienie wykonano w celu usunięcia z powierzchni scaffoldów luźno związanego proszku, który mógłby podczas leczenia implantacyjnego oderwać się od ich powierzchni i przedostać się w inne miejsce organizmu. Wytworzone scaffoldy poddano badaniom mikro- i spektroskopowym.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.