Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stop aluminium A390
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, the effect of heat input in friction surfacing on coating geometry, topology, microstructure, and wear resistance was investigated using numerical and experimental methods. Numerical results were obtained from smoothed-particle hydrodynamics and finite element models, which were calibrated using experimental data. The results demonstrate that the smoothed-particle hydrodynamics model accurately simulates the maximum temperature, heating slope, and the cooling rate during friction surfacing, in comparison to the finite element model. The maximum error in estimating thermal profile parameters in the smoothed-particle hydrodynamics model is 6%, while in the finite element model, it is 11%. Additionally, unlike the finite element model, the smoothed-particle hydrodynamics model can predict the coating geometry with acceptable accuracy, independently of the experimental results. The heat input in friction surfacing strongly affects the material required for the formation of an unbonded zone in the coating. The smoothed-particle hydrodynamics model can predict the surface roughness and roughness at the coating-substrate interface by maximum 8%. Coating A390 aluminum alloy with a heat input of 115 J/mm resulted in hardness and wear resistance increases as 2.47 and 1.6 times, respectively, compering to AA1050 aluminum substrate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.