Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stoichiometric equations
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An analysis of the methods used in Bulgaria for estimating CO2, SO2 and dust emissions has been conducted. The first methodology, which is officially used by all energy auditors at the Agency for Sustainable Energy Development targets the energy efficiency of combustion devices installed mainly at industrial enterprises. The second methodology, used by the Ministry of Environment and Water, is more comprehensive and can be applied to thermal power plants, small combustion plants as well as industrial systems. In recent years, many projects related to energy efficiency and renewable energy projects, including hydrogen technologies, which require an assessment of reduced greenhouse gas emissions, have been implemented as a priority. The use of reliable and accurate methods is essential in the assessment of greenhouse emissions. A novel methodology, based on stoichiometric equations of the combustion process for solid, liquid and gaseous fuels has been proposed and comprised. This novel methodology is characterized by higher precision compared to the methods currently in place and this is achieved through calculating emissions from the combustion of energy fuels accounting for the full elemental composition of the fuel and its heating value, whereas the current commonly applied methods use only the fuel type and the carbon content. A further benefit of the proposed methodology is the ability to estimate emissions of fuels for which there is no alternative method for calculating CO2, SO2 and dust. Results of emission calculations according to the analysed methods are presented. Finally, a comparative analysis between the presented methodologies including an assessment of their accuracy and universal applicability has been made.
2
Content available remote Bone remodeling and bone adaptation
EN
Bone remodelling is a very complicated process that can be characterised as close relationship of biomechnical effects and biomechanical reactions. It is not possible to give an exact definition of the bone remodeling if we take into consideration the aspects related merely to biomechanics or to biochemistry. Biomechanical processes in a remodelled bone tissue depend on the dominant force and moment effects or on the stress and strain state of the tissue. The stress (strain) tensors initiate and govern the rate of biochemical remodelling processes. The paper presented deals with fundamental stoichiometric equations of bone remodelling, kinetic equations of remodelling and rate constants of remodelling. The rates of bone remodelling depend on mechanical effects or on stress (strain) tensors. The spherical stress tensor controls the rate of biomechanical remodelling reactions, while the deviator of a stress (strain) tensor initiates biomechanical reactions. The micro-strains cause the flow of a liquid in the extra-celluar space of osteocytes and initiate the receptor activity of integrins A,B, The micro-strains of a mineralised matrix and the flow of an extra-cellular liquid result, for example in the production of prostaglandin E2 and in the subsquent resorption of a bone tissue.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.