Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stock price prediction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Comparative Study of Deep Learning Models for Predicting Stock Prices
EN
The stock market is volatile, dynamic, and nonlinear. Hence, predicting the stock prices has been a challenging task for any researcher in time series forecasting. Accurately predicting stock prices has been a hot topic for both financial and technical researchers. In this paper, we deploy six deep learning models (i.e., MLP, CNN, RNN, LSTM, GRU, and AE) to predict the closing price, one day ahead, of 20 different companies (i.e. 5 groups of 4) in the S&P 500 markets over the 7-years range (Jan 2015 - August 2022). The experimental results do not provide interesting insights, but also help us to deepen our understanding of how to use deep learning models in financial markets.
EN
This paper studies the potential of the application of the Recurrent Neural Networks, as well as the Deep Neural Networks in the field of the finances and trading. In particular, their use in the stock price predicting software. The concepts of the RNNs and DNNs are provided and explained thoroughly. Both techniques RNNs and DNNs are utilized in the implementation of the stock price predicting software. Two separate versions of the software are created in order to demonstrate the main differences between the algorithms, as well as to determine the best of the two. Each version is thoroughly examined. The comparison of each of the algorithms is performed and highlighted. Examples of the implementations of the software, utilizing each of the algorithms on big volumes of stock data, for stock price prediction are provided. The article summarizes the concept of stock price prediction backed by the popular machine learning algorithms and its application in the nowadays world.
3
Content available remote Application of grammatical evolution to stock price prediction
EN
Grammatical evolution (GE) is one of evolutionary computation techniques. The aim of GE is to find the function or the executable program or program fragment that will find the optimal solution for the design objective such as the function for representing the set of given data, the robot control algorithm and so on. Candidate solutions are described in bit string. The mapping process from the genotype (bitstring) to the phenotype (function or program or program fragment) is defined according to the list of production rules of terminal and non-terminal symbols. Candidate solutions are evolved according to the search algorithm based on genetic algorithm (GA). There are three main issues in GE: genotype definition, production rules, and search algorithm. Grammatical evolution with multiple chromosomes (GEMC) is one of the improved algorithms of GE. In GEMC, the convergence property of GE is improved by modifying the genotype definition. The aim of this study is to improve convergence property by changing the search algorithm based on GA with the search algorithm based on stochastic schemata exploiter (SSE) in GE and GEMC. SSE is designed to find the optimal solution of the function, which is the same as GA. The convergence speed of SSE is much higher than that of GA. Moreover, the selection and crossover operators are not necessary for SSE. When GA is replaced with SSE, the improved algorithms of GE and GEM Care named “grammatical evolution by using stochastic schemata exploiter (GE-SSE)” and “grammatical evolution with multiple chromosome by using stochastic schemata exploiter (GEMC-SSE)”, respectively. In this study, GE-SSE is compared with GE in the symbolic regression problem of polynomial function. The results show that the convergence speed of GE-SSE is higher than that of original GE. Next, GE-SSE and GEMC-SSE are compared in stock price prediction problem. The results show that the convergence speed of GEMC-SSE is slightly higher than that of GE-SSE.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.