In many areas of application it is important to estimate unknown model parameters in order to model precisely the underlying dynamics of a physical system. In this context the Bayesian approach is a powerful tool to combine observed data along with prior knowledge to gain a current (probabilistic) understanding of unknown model parameters. We have applied the methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) to the problem of the atmospheric contaminant source localization. The algorithm input data are the on-line arriving information about concentration of given substance registered by distributed sensor network. We have examined different version of the MCMC algorithms in effectiveness to estimate the probabilistic distributions of atmospheric release parameters. The results indicate the probability of a source to occur at a particular location with a particular release rate.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.