Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sterowanie systemu elektroenergetycznego
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Rozprawa traktuje o zastosowaniu drugiej - bezpośredniej metody Lapunowa do opracowania reguł sterowania łączy HVDC, dzięki którym możliwa jest poprawa stabilności systemu elektroenergetycznego prądu przemiennego. Opracowana metoda stanowi uzupełniającą pętlę sterowania, której działanie uaktywnia się w stanach nieustalonych. Jest sterowaniem wielowejściowym opartym na zmiennych stanu, którego trafność została potwierdzona przez analizę modalną oraz symulacje komputerowe w domenie czasu dla wielomaszynowego systemu testowego.We wprowadzeniu do problemu sterowania łączy HVDC w stanach nieustalonych przedstawiono krótką historię łączy HVDC wskazując główne wady i zalety tych łączy. Opisano budowę podstawowych typów łączy oraz sposób sterowania przekształtnikami, przechodząc dalej do hierarchicznej struktury sterowania łączy HVDC, gdzie odnotowano możliwość realizacji dodatkowych regulatorów łączy HVDC poprzez dostarczenie zewnętrznego sygnału modulującego odpowiednio moc zadaną przekształtników, bez konieczności ingerencji w układy sterowania stacji przekształtnikowych. Przeanalizowano następnie aktualne propozycje sterowania łączy HVDC w zakresie poprawy stabilności systemu elektroenergetycznego. Na tej podstawie sformułowano tezę pracy oraz określono podstawowe wymagania dla reguł sterowania łączy HVDC poprawiających stabilność systemu elektroenergetyeznego. W celu opracowania optymalnego, z punktu widzenia całego systemu elektroenergetycznego, regulatora założono realizację sterowania wielowejściowego, opartego na zmiennych stanu. Na potrzeby rozwiązania zasadniczego problemu zaprezentowano modele łączy HVDC oraz urządzeń FACTS. Przedstawiono rownież modele matematyczne generatorów synchronicznych oraz równania opisujące sieć elektroenergetyczną. Zadanie syntezy regulatora łączy HVDC podzielono na szereg etapów. W pierwszym etapie opracowano reguły sterowania czynną mocą zadaną pojedynczego łącza HVDC w systemie elektroenergetycznym. Stabilizujące reguły sterowania opracowane zostały dla modelu liniowego systemu elektroenergetycznego z wykorzystaniem bezpośredniej metody Lapunowa. Jako cel sterowania przyjęto maksymalizację szybkości rozpraszania energii podczas kołysań jednocześnie maksymalizując ich tłumienie. Przedstawiono zależność określającą zmiany mocy czynnych poszczególnych generatorów w funkcji zmiennych sterujących. Opracowaną metodę rozszerzono następnie dla równoczesnego sterowania wielu łączy HVDC oraz urządzeń FACTS w systemie elektroenergetycznym. W kolejnym etapie opracowano algorytmy jednoczesnego sterowania zarówno mocą czynną i bierną w węzłach przyłączenia łącza HVDC. Uogólniając następnie przedstawioną propozycję dla wielu łączy HVDC w systemie elektroenergetycznym. W kolejnym rozdziale podobne rozważania przeprowadzono dla linii prądu stałego z odczepami, czyli dla wieloterminalowych sieci HVDC. Przeanalizowano również problem sterowalności poszczególnych generatorów za pomocą przedstawionych algorytmów, określając wpływ lokalizacji łączy HVDC na konkretne generatory. Druga część pracy zawiera wyniki testów symulacyjnych opracowanej metody. Na początku tej części przedstawiono zwarty opis zasadniczych elementów modelu systemu testowego. Na podstawie danych systemu testowego New England opracowano i zbudowano wielomaszynowy model systemu elektroenergetycznego umożliwiający zamianę wybranych linii prądu przemiennego na równoważne łącza HVDC. Uwzględniono możliwość sterowania utrzymującego stałą moc wymiany oraz proponowane reguły sterowania. W modelu przewidziano również możliwość zainstalowania i odpowiedniego sterowania urządzeń FACTS. Podczas badań symulacyjnych przeanalizowano wpływ łącza HVDC utrzymującego stałą moc wymiany na stabilność systemu elektroenergetycznego prądu przemiennego. Następnie, z bardzo dobrym rezultatem, zweryfikowano skuteczność zaproponowanych reguł sterowania. Określono wpływ struktury pomiarowo telekomunikacyjnej na uzyskiwane rezultaty sterowania. Określono również wrażliwość zaproponowanej metody na zmiany konfiguracji sieci, jej obciążeń oraz na opóźnienia w przesyle informacji wejściowych dla regulatora. W ostatniej części pracy wykonano analizę modalną dla systemu testowego z wykorzystaniem proponowanych metod sterowania, która ostatecznie potwierdziła ich skuteczność.
EN
The dissertation deals with the use of the direct Lyapunov method for the development of control law of HVDC links, to improve the stability of the AC power system. This method is supplementary to the main control and it is activated in the transient state. The proposed control is a multi-loop control based on state variable. The validity of the proposed control has been confirmed by modal analysis and by time domain computer simulation for a multi-machine test system. The introduction to the problem of controlling HVDC links in transient states includes a brief history of HVDC lines indicating the main advantages and disadvantages of these links. The construction of the basic types of links and how to control converters has also been described, going on to the hierarchical control structure of HVDC links. It also presents the possibility of implementing additional control of HVDC links by providing an external modulating signal of converter reference power, without die need to interfere in the control systems of converter stations. Then the current proposals of HVDC link control to improve the stability of the power system have been analyzed. On this basis, the thesis of the dissertation and basic requirements for the HVDC link control law to improve the power system stability have been formulated. In order to develop an optimal controller from the point of view of the whole power system, implementation of multi-input control has been assumed, based 0Il1be state variables. To solve the fundamental problem, a model which combines HVDC links and FACTS devices has been presented. Also, mathematical models of synchronous generators and equations for the transmission network have been presented. The task of the HVDC links controller synthesis is divided into several stages. In the first stage, active power control rules set for a single HVDC link in the power system have been developed. Stabilizing control rules have been derived using the direct Lyapunov method for the linear model of the power system. The aim of control is to maximise the rate of energy dissipation during power swings and therefore maximisation of their damping. Also, the dependence of changes in the active power of generators as a function of given control variables has been presented. The developed method has then been extended for simultaneous control of multiple HVDC links and FACTS devices in a power system. In the next stage, algorithms have been developed for simultaneous control of both active and reactive power in the HVDC links terminal nodes. The presented method has been generalized for any number of HVDC links in the power system. In the next chapter, similar considerations have been carried out for multi-terminal DC links. The problem of controllability of given generators using the presented algorithms and the impact of location of the HVDC links to specific generators have been analyzed. The second part of the dissertation presents the results of the simulation test of this method. The beginning of this section provides a compact description of the essential elements of the test system model. Based on data from the New England test system, a multi-machine power system model has been developed and built. That model allows the conversion of selected lines in the equivalent AC HVDC link and gives the possibility of retaining constant power control and the proposed control rules. The model also provides the possibility to install FACTS devices with suitable control. During preliminary simulation studies, the influence of HVDC links with constant power control on the stability of the AC power system has been examined. Then the effectiveness of the proposed control law has been verified with a very good result. The proposed control is robust and insensitive to changes in the network configuration, loading conditions and delays in transmission of input signals. In the last part of the dissertation, a modal analysis has been performed to verify the system using the proposed control methods, which ultimately proves their effectiveness.
PL
W pracy przedstawiono pewne aspekty sterowania systemem elektroenergetycznym z uwzględnieniem minimalizacji kosztów współczesnego rozległego systemu pomiarowego. Jest to związane z wyznaczaniem dominujących wartości własnych systemu jak również z analizą marginesu stabilności. W tym celu wykonano symulacje stanów nieustalonych i dokonano analizy częstotliwościowej. Do śledzenia marginesu stabilności wykorzystano wielomiany Kołmogorowa - Gabora.
EN
This paper presents some aspects of Interconnected Power System (IPS) operation control problems solving along with cost minimization of implementation of contemporary Wide Area Measurement System. This is related to the IPS dominant eigenfrequencies determination as well to monitoring of steady-state stability margin. In order to determine (a priori) mentioned eigenfrequencies the IPS transient conditions simulation and spectral analysis were used. For monitoring of mentioned stability margin the special models in Kolmogorov-Gabor polynomials form were created.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.