Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  steppe zone
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water and wind erosion are the most powerful factors in the decrease of soil fertility and a threat to food security. The study was conducted on the steppe zone in Ukraine (total area of 167.4 thous. km2), including agricultural land (131.6 thous. km2). At the first stage, the modeling of spatial differentiation of water and wind erosion manifestations was carried out to calculate losses of soil (Mg∙ha–1) and to determine their degradation. At the second stage, soil-climatic bonitet of zonal soils (points) is carried out to determine their natural fertility (Mg∙ha–1). At the third stage, the spatial adjustment of the natural soil fertility to the negative effect of erosion was carried out. This made it possible to calculate crop losses and total financial losses due to water and wind erosion. The integrated spatial modeling showed that about 68.7% of arable land was constantly affected by the combined erosion, in particular the area of low eroded arable land (16.8%), and medium and highly eroded land (22.1%). Due to erodibility of soil, about 23.3% of agricultural land transferred from the category of high and medium quality to medium, low and very low quality, which is caused by the loss of soil fertility of up to 70%, crop losses of up to 1.93 Mg∙ha–1 ha–1 and eduction of agricultural income up to 390 USD∙ha–1. In the steppe region under the research, gross crop losses from erosion were up to 15.11 thous. Mg∙ha–1 (3.05 mln USD). In order to protect soils, improve fertility and increase crop yields in the steppe zone in Ukraine, the following measures were suggested: adaptive and landscape erosion control design with elements of conservation farming in accordance with the spatial differentiation of soil quality and extent of water erosion deflation danger.
EN
Spatial raster distribution models of the values of factors influencing the potential soil erosion hazard were created using GIS technologies. The erosion hazard was estimated using the modified RUSLE (Revised Universal Soil Loss Equation) model. The potential of annual soil loss of arable land was calculated. The spatial gradation of erosion violation of administrative and territorial units in the steppe zone of Ukraine was provided. About 32.7% of arable land that is subject to high erosion hazard was allocated. About 48 administrative and territorial units have a specific area less than 5% of erosion disturbed lands. They are characterized by a resistant type of agrolandscapes regarding the water-erosion processes. Most administrative and territorial units with high erosive-accumulative potential (the percentage of the area is 15% or more) are located in the western and southwestern parts of the steppe zone of Ukraine. The specific area of erosion hazardous lands reaches up to 32% in separate administrative-territorial units. The obtained results allow determining the need for a spatially discrete-distribution implementation of adaptive-landscape anti-erosion design with the elements of soil-protective agriculture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.