Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  steady-state visual evoked potential
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Steady-state visual evoked potential (SSVEP) based brain–computer interfaces have been widely studied because these systems have potential to restore capabilities of communication and control of disable people. Identifying target frequency using SSVEP signals is still a great challenge due to the poor signal-to-noise ratio of these signals. Commonly, this task is carried out with detection algorithms such as bank of frequency-selective filters and canonical correlation analysis. This work proposes a novel method for the detection of SSVEP that combines the empirical mode decomposition (EMD) and a power spectral peak analysis (PSPA). The proposed EMD+PSPA method was evaluated with two EEG datasets, and was compared with the widely used FB and CCA. The first dataset is freely available and consists of three flickering light sources; the second dataset was constructed and consists of six flickering light sources. The results showed that proposed method was able to detect SSVEP with high accuracy (93.67 ± 9.97 and 78.19 ± 23.20 for the two datasets). Furthermore, the detection accuracy results achieved with the first dataset showed that EMD+PSPA provided the highest detection accuracy (DA) in the largest number of participants (three out of five), and that the average DA across all participant was 93.67 ± 9.97 which is 7% and 4% more than the average DA achieved with FB and CCA, respectively.
EN
Brain–computer interfaces based on steady-state visual evoked potentials have recently gained increasing attention due to high performance and minimal user training. Stimulus frequencies in the range of 4–60 Hz have been used in these systems. However, eye fatigue when looking at low-frequency flickering lights, higher risk of induced epileptic seizure for medium-frequency flickers, and low signal amplitude for high-frequency flickers complicate appropriate selection of flickering frequencies. Here, different flicker frequencies were evaluated for development of a brain–computer interface speller that ensures user's comfort as well as the system's efficiency. A frequency detection algorithm was also proposed based on Least Absolute Shrinkage and Selection Operator estimate that provides excellent accuracy using only a single channel of EEG. After evaluation of the SSVEP responses in the range of 6–60 Hz, three stimulus frequency sets of 30–35, 35–40 and 40–45 Hz were adopted and the system's performance and corresponding eye fatigue were compared. While the accuracy of the asynchronous speller for all three stimulus frequency sets was close to the maximum (average 97.6%), repeated measures ANOVA demonstrated that the typing speed for 30–35 Hz (8.09 char/min) and 35–40 Hz (8.33 char/min) are not significantly different, but are significantly higher than for 40–45 Hz (6.28 char/min). On the other hand, the average eye fatigue scale for 35–40 Hz (80%) is comparable to that for 40–45 Hz (85%), but very higher than for 30–35 Hz (60%). Therefore, 35–40 Hz range was proposed for the system which resulted in 99.2% accuracy and 67.1 bit/min information transfer rate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.