Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stars: late-type
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote HD 17092 b Revisited
EN
We present previously unpublished precise radial velocity measurements for HD 17092 and updated keplerian parameters of its low-mass companion HD 17092 b.
2
Content available remote Hen 3-160 - the First Symbiotic Binary with Mira Variable S Star
EN
Hen 3-160 is reported in Belczyński et al. catalog as a symbiotic binary system with M7 giant donor. Using V- and I-band photometry collected over 20 years we have found that the giant is a Mira variable pulsating with 242.5-day period. The period-luminosity relation locates Hen 3-160 at the distance of about 9.4 kpc, and its Galactic coordinates (l=267.°7, b=-7.°9) place it ≈1.3 kpc above the disk. This position combined with relatively high proper motions (μαcosδ=-1.5 mas/yr, μ_δ=+2.9 mas/yr, Gaia DR2) indicates that Hen 3-160 has to be a Galactic extended thick-disk object. Our red optical and infrared spectra show the presence of ZrO and YO molecular bands that appear relatively strong compared to the TiO bands. Here we propose that the giant in this system is intrinsic S star, enriched in products of slow neutron capture processes occurring in its interior during an AGB phase which would make Hen 3-160 the first symbiotic system with Mira variable S star.
EN
New CCD observations have been combined with archival data to investigate the nature of the red variables in the globular cluster M13. Mean magnitudes, colors and variation ranges on the UBVIC system have been determined for the 17 cataloged red variables. 15 of the stars are irregular or semi-regular variables that lie at the top of the red giant branch in the color-magnitude diagram. Two stars are not, including one with a well-defined period and a light curve shape indicating it is an ellipsoidal or eclipsing variable. All stars redder than (V-IC)0=1.38 mag vary, with the amplitudes being larger with increased stellar luminosity and with bluer filter passband. Searches of the data for periodicities yielded typical variability cycle times ranging from 30 d up to 92 d for the most luminous star. Several stars have evidence of multiple periods. The stars' period-luminosity diagram compared to those from microlensing survey data shows that most M13 red variables are overtone pulsators. Comparison with the diagrams for other globular clusters shows a correlation between red variable luminosity and cluster metallicity.
EN
The fifteenth part of the OGLE-III Catalog of Variable Stars (OIII-CVS) contains 232406 long-period variables (LPVs) detected in the OGLE-II and OGLE-III fields toward the Galactic bulge. The sample consists of 6528 Mira stars, 33235 semiregular variables and 192643 OGLE small amplitude red giants. The catalog data and data resources that are being published include observational parameters of stars, finding charts, and time-series I- and V-band photometry obtained between 1997 and 2009. We discuss statistical features of the sample and compare it with collections of LPVs in the Magellanic Clouds. The vast majority of red giant stars in the Galactic bulge have an oxygen-rich chemistry. Mira variables form a separate group in the period-amplitude diagram, which was not noticed for oxygen-rich Miras in the Magellanic Clouds. We find a clear deficit of long-secondary period stars toward the Galactic center compared to the sample of Magellanic Clouds' LPVs.
5
Content available remote Evolution of Cool Close Binaries - Rapid Mass Transfer and Near Contact Binaries
EN
We test the evolutionary model of cool close binaries developed by one of us (KS) on the observed properties of near contact binaries (NCBs). These are binaries with one component filling the inner critical Roche lobe and the other almost filling it. Those with a more massive component filling the Roche lobe are SD1 binaries whereas in SD2 binaries the Roche lobe filling component is less massive. Our evolutionary model assumes that, following the Roche lobe overflow by the more massive component (donor), mass transfer occurs until mass ratio reversal. A binary in an initial phase of mass transfer, before mass equalization, is identified with SD1 binary. We show that the transferred mass forms an equatorial bulge around the less massive component (accretor). Its presence slows down the mass transfer rate to the value determined by the thermal time scale of the accretor, once the bulge sticks out above the Roche lobe. It means, that in a binary with a (typical) mass ratio of 0.5 the SD1 phase lasts at least 10 times longer than resulting from the standard evolutionary computations neglecting this effect. This is why we observe so many SD1 binaries. Our explanation is in contradiction to predictions identifying the SD1 phase with a broken contact phase of the Thermal Relaxation Oscillations model. The continued mass transfer, past mass equalization, results in mass ratio reversed. SD2 binaries are identified with this phase. Our model predicts that the time scales of SD1 and SD2 phases are comparable to one another. Analysis of the observations of 22 SD1 binaries, 27 SD2 binaries and 110 contact binaries (CBs) shows that relative number of both types of NCBs favors similar time scales of both phases of mass transfer. Total masses, orbital angular momenta and orbital periods of SD1 and SD2 binaries are indistinguishable from each other whereas they differ substantially from the corresponding parameters of CBs. We conclude that the results of the analysis fully support the model presented in this paper.
EN
The thirteenth part of the OGLE-III Catalog of Variable Stars (OIII-CVS) contains 19 384 long-period variables (LPVs) detected in the Small Magellanic Cloud. The sample is composed of 352 Mira stars, 2222 semiregular variables (SRVs) and 16 810 OGLE Small Amplitude Red Giants (OSARGs). Sources are divided into oxygen-rich and carbon-rich stars. The catalog includes time-series VI photometry obtained between 1997 and 2009. Methods used to select and classify variable stars are described. We show some statistical properties of the sample, and compare it with LPVs in the Large Magellanic Cloud. Additionally, we present objects of particular interest, e.g., a SRV with outbursts, and a Mira star with the longest known pulsation period P=1860 days.
7
Content available remote Evolution of Cool Close Binaries - Approach to Contact
EN
As a part of a larger project, a set of 27 evolutionary models of cool close binaries was computed under the assumption that their evolution is influenced by the magnetized winds blowing from both components. Short period binaries with the initial periods of 1.5 d, 2.0 d and 2.5 d were considered. For each period three values of 1.3 Msun, 1.1 Msun and 0.9 Msun were taken as the initial masses of the more massive components. The initial masses of the less massive components were adjusted to avoid extreme mass ratios. Here the results of the computations of the first evolutionary phase are presented, which starts from the initial conditions and ends when the more massive component reaches its critical Roche lobe. In all considered cases this phase lasts for several Gyr. For binaries with the higher total mass and/or longer initial periods this time is equal to, or longer than the main sequence life time of the more massive component. For the remaining binaries it amounts to a substantial fraction of this life time. From the statistical analysis of models, the predicted period distribution of detached binaries with periods shorter than 2 d was obtained and compared to the observed distribution from the ASAS data. An excellent agreement was obtained under the assumption that the period distribution in this range is determined solely by magnetic braking (MB), i.e., the mass and angular momentum loss due to the magnetized winds, as considered in the present paper. This result indicates, in particular, that virtually all cool detached binaries with periods of a few tenths of a day, believed to be the immediate progenitors of W UMa-type stars, were formed from young detached systems with periods around 2-3 d. MB is the dominant formation mechanism of cool contact binaries. It operates on the time scale of several Gyr rendering them rather old, with age of 6-10 Gyr. The results of the present analysis will be used as input data to investigate the subsequent evolution of the binaries, through the mass exchange phase and contact or semi-detached configuration till the ultimate merging of the ultimate merging of the components.
EN
We use the OGLE-II and OGLE-III data in conjunction with the 2MASS near-infrared (NIR) photometry to identify and study Miras and Semiregular Variables (SRVs) in the Large Magellanic Cloud. We found in total 3221 variables of both types, populating two of the series of NIR period-luminosity (PL) sequences. The majority of these objects are double periodic pulsators, with periods belonging to both PL ridges. We indicate that in the period - Wesenheit index plane the oxygen-rich and carbon-rich AGB stars from the NIR PL sequences C, C' and D split into well separated ridges. Thus, we discover an effective method of distinguishing between O-rich and C-rich Miras, SRVs and stars with Long Secondary Periods using their V and I-band photometry. We present an empirical method of estimating the mean Ks magnitudes of the Long Period Variables using single-epoch Ks measurements and complete light curves in the I-band. We utilize these corrected magnitudes to show that the O-rich and C-rich Miras and SRVs follow somewhat different Ks-band PL relations.
EN
We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.
EN
We used the OGLE-II and OGLE-III photometry of red giants in the Large Magellanic Cloud to select and study objects revealing ellipsoidal variability. We detected 1546 candidates for long period ellipsoidal variables and 121 eclipsing binary systems with clear ellipsoidal modulation. The ellipsoidal red giants follow a period-luminosity (PL) relationship (sequence E), and the scatter of the relation is correlated with the amplitude of variability: the larger the amplitude, the smaller the scatter. We note that some of the ellipsoidal candidates exhibit simultaneously OGLE Small Amplitude Red Giants pulsations. Thus, in some cases the Long Secondary Period (LSP) phenomenon can be explained by the ellipsoidal modulation. We also select about 1600 red giants with distinct LSP, which are not ellipsoidal variables. We discover that besides the sequence D in the PL diagram known before, the LSP giants form additional less numerous sequence for longer periods. We notice that the PL sequence of the ellipsoidal candidates is a direct continuation of the LSP sequence toward fainter stars, what might suggest that the LSP phenomenon is related to binarity but there are strong arguments against such a possibility. About 10% of the presented light curves reveal clear deformation by the eccentricity of the system orbits. The largest estimated eccentricity in our sample is about 0.4. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.