Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stale węglowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono wyniki badań wpływu parametrów procesu walcowania na podatność do plastycznego odkształcania, właściwości mechaniczne i strukturę stali gatunku 23MnB4, 30MnB4, C45 i C70 przeznaczonych do walcowania walcówki w nowoczesnej walcowni ciągłej. Ocenę plastyczności dokonano w próbie skręcania na gorąco przy użyciu plastometru skrętnego, w zakresie temperatury walcowania walcówki od 850 do 1150oC z prędkością odkształcenia 0,1, 1 i 10 s-1. Określono zależności naprężenia uplastyczniającego od odkształcenia oraz wielkości charakteryzujące podatność takie, jak: maksymalne naprężenie uplastyczniające, wartość odkształcenia odpowiadająca maksymalnemu naprężeniu oraz odkształcenie do zniszczenia. Wielkości te uzależniono od temperatury i prędkości odkształcenia oraz od energii aktywacji i parametru Zenera–Hollomona. Na podstawie przeprowadzonych badań plastometrycznych dla stali 23MnB4, 30MnB4, C45 i C70 stwierdzono, że charakteryzują się dużą odkształcalnością – sięgającą wartości odkształcenia granicznego ɛg powyżej wartości 20 w najniższej temperaturze odkształcania – i ciągłym zwiększaniem odkształcalności ze wzrostem temperatury. Natomiast wartości maksymalnego naprężenia uplastyczniającego są zróżnicowane w zależności od gatunku badanej stali, a w większym stopniu zależy od temperatury i prędkości odkształcania. Badania dotyczące wpływu parametrów walcowania i chłodzenia na ilościowe cechy mikrostruktury perlitu i właściwości mechaniczne walcówki realizowano na modelowych walcarkach w VSB Ostrawa. Badania mikrostruktury badanych stali 23MnB4, 30MnB4, C45 i C70 po badaniach plastometrycznych oraz próbach walcowania przeprowadzono przy użyciu technik mikroskopii świetlnej i skaningowej. Dodatkowo ilościową analizę mikrostruktury stali perlitycznej wykonano z zastosowaniem nowego programu komputerowego „PILS” – Perlite Inter-Lamellar Spacing.
EN
The paper presents the tests results of influence of the rolling process parameters on the liability to plastic deformation, mechanical properties and structure of steel types 23MnB4, 30MnB4, C45 and C70 meant for rolling wire rods in a modern continuous mill. The plasticity assessment was conducted with the use of hot torsion test using torsial plastometer in rolling temperature range for the wire rod from 850 to 1150oC with deformation speed of 0.1, 1 and 10 s-1. The dependencies of yield stress to deformation were determined together with values characterising the liability such as: maximum yield stress, value of deformation equivalent to maximum stress and deformation to failure. Those values were dependent on temperature and speed of deformation as well as activation energy and Zener-Hollomon parameter. It was stated, on the basis of conducted plastometric tests of steel types 23MnB4, 30MnB4, C45 and C70 that they are characterised with big deformability reaching the value of boundary deformation ɛg above the value of 20 in the lowest deformation temperature and constant increase of deformability with the increase of temperature. However, the values of maximum yield stress vary de-pending on tested steel type and they are more dependent on temperature and speed of deformation. Tests concerning the influence of rolling parameters and cooling on the quantitative features of pearlite microstructure and mechanical properties of wire rods were conducted on model rolling mills in VSB Ostrava. Microstructure tests of steel types 23MnB4, 30MnB4, C45 and C70 after plastometric tests and rolling tests were conducted with the use of light and scanning microscopy. Additionally, quantitative analysis of microstructure of pearlitic steel was conducted with the use of new computer program “PILS” – Pearlite Inter-Lamellar Spacing.
PL
W pracy przedstawiono typy warstw azotowanych uzyskiwanych w przemysłowych procesach azotowania gazowego na stalach węglowych. Zwrócono uwagę na strukturę przypowierzchniowej warstwy azotków żelaza, która odpowiada głównie za takie właściwości jak odporność na zużycie czy odporność na korozję. Przeprowadzono analizę mikroskopową uzyskiwanych struktur, dzięki której można wstępnie oceniać prawidłowość wykonania procesów azotowania i prognozować odporność korozyjną. Aby warstwy azotowane miały dobrą odporność korozyjną, przypowierzchniowa warstwa azotków żelaza nie powinna być porowata lub mieć bardzo ograniczoną porowatość i najlepiej, żeby składała się tylko z fazy γ (Fe4N).
EN
The paper presents the types of the nitrided layers obtained in industrial gas nitriding processes used for carbon steels. Attention is paid to the structure of the subsurface layers of iron nitrides, which is primarily responsible for such properties as: wear resistance or corrosion resistance. A microscopic analysis of the obtained Structures, forecast of its corrosion resistance can be judged. In order to get the nitrided layers which have good corrosion resistance, was made thanks to which the correctness of the implementation of the nitriding processes and the selvedge iron nitride layer should not be porous or it should have a very limited porosity, and preferably it should consist only the phase γ'(Fe4N).
PL
W artykule omówiono sposoby wytwarzania warstw azotowanych na stalach węglowych typu C45 i C10 z przypowierzchniową warstwą azotków żelaza składającą się tylko z fazy γ′ (Fe4N) lub z niewielkim dodatkiem fazy ε (Fe2-3N). Warstwy wytwarzano za pomocą regulowanego azotowania gazowego. Warstwy azotowane z przypowierzchniową warstwą azotków żelaza składające się tylko z fazy γ′ wytworzono w procesie z regulacją w temperaturze procesu (bez regulacji i kontroli okresu nagrzewania) albo przez całkowitą regulację i kontrolę całego procesu w okresie nagrzewania i w zadanej temperaturze procesu. Tak wytworzone przypowierzchniowe warstwy azotków miały ten sam skład fazowy, lecz inną morfologię. Warstwy wytworzone przez przekształcenie fazowe (bez regulacji okresu nagrzewania tylko z regulacją we właściwej temperaturze procesu) są porowate, natomiast warstwy z całkowitą regulacją i sterowaniem procesu w okresie nagrzewania i w zadanej temperaturze procesu są szczelne i prawie pozbawione porów. Brak porowatości i szczelność przypowierzchniowych warstw azotków żelaza pozwala na osiągniecie dobrej odporności korozyjnej w porównaniu z warstwami porowatymi. W celu określenia mikrostruktury i odporności korozyjnej warstw azotowanych przeprowadzono badania metalograficzne (mikroskopia świetlna i elektronowa), rentgenostrukturalne oraz odporności na korozję metodami elektrochemicznymi i w komorze solnej.
EN
In the article methods of formation of the nitrided layers on the surface of C45 and C10 carbon steels, with the subsurface layer consisting of γ′ (Fe4N) phase only, or with a small addition of ε (Fe2-3N) phase are presented. Layers were formed by controlled gas nitriding. Nitrided layers with subsurface iron nitride layer consisting of the γ′ phase only produced during process with adjustment of its parameters at the nitriding temperature (without regulation and control of the heating period) or by a full adjustment and control of the entire process of heating and soaking at the determined process temperature. Formed this way, subsurface nitride layer have the same phase composition but different morphology. The layers formed by phase conversion (without control and regulation of the heating period, control and regulation at the stage of nitriding at process proper temperature only) are porous, while the layers with the full adjustment and control of the whole process are dense and almost pore-free. No porosity and tightness of subsurface iron nitrides layers allows to achieve good corrosion resistance in comparison with porous layers. In order to identify the microstructure and corrosion resistance of nitrided layers the metallographic studies (light and electron microscopy), X-ray diffraction analyses and corrosion resistance tests by electrochemical and salt spray methods were carried out.
PL
W stali poddanej oddziaływaniu azotu mogą powstać - w zależności od warunków prowadzenia procesu fazy z układów równowagi faz żelazo - azot - dodatki stopowe. Szczególne zainteresowanie budzi faza określana jako gammaN (gammaC) tzw. austenit azotowy (węglowy) o zwiększonym parametrze sieci. Przy obecności tej fazy w stalach nierdzewnych zachowana jest dobra odporność korozyjna przy jednoczesnym wzroście odporności na zużycie przez tarcie. Faza gammaN może powstać również w stalach węglowych, a nawet w żelazie Armco, jeśli zostaje przetopiona warstwa wierzchnia materiału krótkimi (skala mikrosekund) intensywnymi (skala MWCm-2) impulsami plazmy azotowej. W przypadku fazy gammaC może wystarczyć przetapiający powierzchnię stali impuls energii dostarczonej np. przez wiązkę jonów lub plazmy nie zawierającej pierwiastka reaktywnego. Przeprowadzono procesy modyfikacji powierzchni stali węglowych intensywnymi impulsami plazmy argonowej lub azotowej, które spowodowały przetopienie warstwy wierzchniej materiału. Warstwy te charakteryzowano metodami NRA, SEM, CEMS, GXRD oraz przeprowadzono testy tribologiczne. Wytworzone zmodyfikowane warstwy wierzchnie ze znaczną zawartością faz austenitycznych, w tym austenitu o zwiększonym parametrze sieci posiadają lepsze niż materiał wyjściowy właściwości użytkowe.
EN
Phase transformations into austenite can occur in the surface layers of steels irradiated with intense pulses of laser, ion or plasma beams. Due to the presence of phase, named nitrogen (carbon) expanded austenite, gammaN (gammac) good corrosion resistance is maintained while the wear resistance is increased in stainless steel. Unalloyed steels with various content of carbon have been treated using high intensity, short argon and nitrogen plasma pulses and the near surface layer has been melted. In the case of gammaC phase the pulses can induce only heat effects but with intense pulses implemented the nitrogen atoms generate the formation of phases with nitrogen. NRA, SEM, CEMS, GXRD measurements and tribological tests have been used to examine the modified samples. This paper presents results of investigations of modification effects in the near surface layer of carbon steels after irradiation with intense argon or nitrogen plasma pulses.
PL
W pracy przedstawiono wyniki badań obejmujące początkowe stadium utleniania Fe oraz stali Fe-C-Cr-MnNi-Si w powietrzu, w temperaturach 950-1110 oC i czasie 190 do 900 min. Przebieg utleniania stali ma charakter podobny do utleniania czystego żelaza. Współczynnik kp parabolicznego wzrostu warstw zgorzeliny na żelazie i stali uzależniony jest od temperatury, składu chemicznego stali oraz przemian fazowych zachodzących w stalach podczas utleniania wysokotemperaturowego. Współczynnik parabolicznego procesu powstawania warstw zgorzeliny kp i ich grubość l na powierzchni stali są opisane wielkością parametru kp (y Fe), przy danej koncentracji Ni pierwiastków stopowych oraz parametru [wzór] dotyczącego każdego z pierwiastków stopowych występujących w składzie chemicznym stali. Warstwa zgorzeliny powstająca na powierzchni stali powoduje odpowiedni przyrost masy [wzór], długości [wzór] oraz średnicy [wzór] utlenianych próbek. Natomiast na prędkość utleniania stali ma wpływ wielkość współczynnika dyfuzji węgla D, który stanowi o grubości warstwy odwęglonej w czasie wysokotemperaturowego utleniania w powietrzu.
EN
Investigation results of the initial stage of Fe-C-Cr-Mn-Ni-Si steels oxidation in ambient air are presented. The oxidation annealing was carried out at temperature range of 950-111 O oC, within 190-900 min. The oxidation course of investigated steels is similar to oxidation of the pure iron. Kp coefficient of parabolic scale growth depends on temperature, chemical composition of steel and phase transformation of steel occured during high temperature annealing. The scale layer created on the steel surface is characterized by the gain in weight length and diarneter [formulas] of the oxidized samples. Observed changes - values of kp coefficient and thickness of scale layer l are expressed by parameter [formula], for given concentration Ni of alloying elements and parameter [formula] reffering to each element of steel composition. The oxidation rate depends on diffusion coefficient D, which determines the thickness of decarburized layer obtained during high temperature annealing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.