Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stal nanostrukturalna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the study was to develop a technology for welding non-weldable 42CrMo4 and NANOS-BA® steel grades in the process of hot rolling and two-stage heat treatment. As a result of physical experiments carried out in a line for semi-industrial simulation of the production of metals and their alloys (LPS) and additional heat treatment, a durable combination of 42CrMo4 and NANOS-BA® steels with high mechanical properties was obtained, including: Rp0.2 = 1036 MPa, Rm = 1504 MPa and A = 10.9%, without microscopically visible cracks and other discontinuities in the joined surface. The quality of the 42CrMo4/NANOS-BA® clad plates produced in this way was assessed on the basis of microstructure examination as well as bending, shear and tensile strength tests.
PL
Celem pracy było opracowanie technologii zgrzewania niespawalnych stali w gatunkach 42CrMo4 i NANOS-BA® w procesie walcowania na gorąco i dwuetapowej obróbki cieplnej. W wyniku fizycznych eksperymentów przeprowadzonych w linii do półprzemysłowej symulacji wytwarzania metali i ich stopów (LPS) i dodatkowej obróbki cieplnej uzyskano trwałe połączenie stali 42CrMo4 i NANOS-BA® o wysokich właściwościach mechanicznych m.in.: Rp0,2 = 1036 MPa, Rm =1504 MPa i A = 10,9%, bez widocznych mikroskopowo pęknięć i innych nieciągłości w płaszczyźnie zgrzewania. Ocenę jakości wykonanych tym sposobem połączeń płaskowników dwuwarstwowych 42CrMo4/NANOS-BA® dokonano w oparciu o badania mikrostruktury i próby wytrzymałości na zginanie, ścinanie i rozciąganie.
PL
W celu podwyższenia właściwości eksploatacyjnych kontenera obserwacyjno-obronnego LOOK opracowywane jest innowacyjne opancerzenie, którego elementy będą wykonane z blach ze stali nanostrukturalnej bainitycznej, co zapewni poziom 2 ochrony wg STANAG 4569. Z uwagi na odmienne właściwości mechaniczne i technologiczne tych blach w odniesieniu do blach pancernych stosowanych obecnie, modyfikacji uległa konstrukcja opancerzenia kontenera. Artykuł zawiera wyniki badań charakterystyk materiałowych oraz testów ostrzałem blach ze stali nanostrukturalnej wytworzonych w warunkach półprzemysłowych. W celu optymalizacji parametrów obróbki cieplnej blach wykonano badania kinetyki przemian fazowych, a następnie dla różnych wariantów obróbki prze-prowadzono pomiary właściwości mechanicznych oraz analizę zmian mikrostruktury i właściwości w miejscach oddziaływań pocisków w trakcie testów ostrzałem. Przedstawione badania poprzedzają uruchomienie procesu produkcji blach arkuszowych z nowego gatunku stali do produkcji systemu opancerzenia kontenera LOOK. Optymalizację właściwości mechanicznych blach wykonano przez dobór następujących parametrów wytwarzania: składu chemicznego stali, przeróbki plastycznej i wstępnej obróbki cieplnej oraz temperatury i czasu finalnej obróbki cieplnej (wygrzewania izotermicznego). W badaniach zwrócono uwagę na wpływ segregacji pierwiastków stopowych i domieszkowych na właściwości ochronne blach. W wyniku zastosowania temperatury wygrzewania w zakresie 210-225°C (temperatura MS = ok. 200°C dla szybkości chłodzenia 1-2 °C/s) i czasu odpowiednio w przedziale 120-70 godzin uzyskano następujące właściwości mechaniczne materiału: Rp0,2 1400-1500 MPa, Rm 2000-2150 MPa; A 10-13%; KV (w temp. otoczenia) 10-16 J oraz twardość 590-610 HV10 (53-54 HRC). Mikrostrukturę blach stanowił bezwęglikowy nanobainit listwowy oraz austenit resztkowy w ilości 10-21%. W testach ostrzałem zastosowano blachy o grubości 6,3 i 7,5 mm oraz amunicję 5,56x45 mm M193 i 7,62x51 mm API BZ. Na podstawie wyników tych testów oraz badań mikrostruktury w miejscach ostrzału stwierdzono występowanie zjawisk świadczących o wysokiej skuteczności ochronnej badanych blach, przejawiających się dużą zdolnością do pochłaniania i rozpraszania energii pocisku bez skłonności do pękania. Na podstawie wyników badań właściwości mechanicznych i testów ostrzałem blach eksperymentalnych, opracowano skład chemiczny stali nanostrukturalnej bainitycznej, dostosowany do wykonania w warunkach przemysłowych blach o grubości w zakresie 6-8 mm. Przeprowadzono analizę możliwości obniżenia masy opancerzenia kontenera na podstawie wyników badań blach ze stali nanostrukturalnej wytworzonych w warunkach półprzemysłowych. Na podstawie analizy konstrukcji i warunków użytkowania kontenera wskazano obszary newralgiczne z punktu widzenia ochrony balistycznej, które poddane będą testom ostrzałem. Badania balistyczne zostaną wykonane na segmentach kontenera reprezentujących wytypowane obszary newralgiczne.
EN
An innovative armour system containing plates made of nanostructured bainite steel is under development to improve operating properties of a light armoured observation-protective container (LAOC) providing the 2nd protection level according to STANAG 4569. Armour system solution of the container has been modified because the new plates have different mechanical and technological properties than currently used armour plates. The paper presents results of investigation of material characteristics and firing tests of plates made of nanostructured steel in the semi-industrial scale. To optimise parameters of heat treatment of the plates the kinetics of phase transformation was examined, and mechanical properties were measured, and changes in microstructure in the area of projectile interaction at firing tests were analysed for different variants of treatment. The reported investigations precede the industrial scale production process for plates made of the new grade steel designed for the armour system of LAOC. Optimisation of mechanical properties of the plates has been carried out by selection of such production parameters as chemical composition of the steel, hot working, interprocess heat treatment and temperature and time of final heat treatment (isothermal annealing). Effect of primary segregation of alloying and residual elements on protective properties of the plates is indicated. As a result of applying the annealing temperature in the range of 210-225°C (Ms temperature is ca. 200°C at cooling rate 1-2°C/s) and time in the range of 120-70 hours respectively, the following properties have been achieved: YS0.2 (yield strength) 1400-1500 MPa; UTS (ultimate tensile strength) 2000-2150 MPa; TE (total elongation) 10-13%, impact toughness KV at room temperature 10-16 J and hardness 590-610 HV (53-54 HRC). Microstructure of the plates consists of carbide free lathy nanobainite and 10-21% (volume fraction) of retained austenite. Plates of thickness 6.3 and 7.5 mm and ammunition type of 5.56x45 mm M193 and 7.62x51 mm API BZ have been used in the firing tests. Based on results of firing tests and microstructure examination in the area of projectile interaction the phenomena have been identified indicating high efficiency of ballistic protection of investigated plates, manifested by high ability to absorption and dissipation of projectile energy without susceptibility to cracking. Based on the results of mechanical properties measurements and firing tests a chemical composition of the nanostructured bainitic steel adjusted for industrial production of plates of thickness in the range of 6-8 mm has been developed. An analysis of container armour system mass reduction possibility, basing on results of investigation of the nanostructured bainite steel plates made in the semi-industrial scale, has been carried out. Basing on the analysis of the container construction and operational conditions some sensitive areas of ballistic protection have been specified to be subjected to firing tests. Ballistic examination will be carried out using the container segments representing the selected sensitive areas.
EN
The paper contains results of investigation of nanostructured bainitic steel subjected to repeated high-strain-rate deformations using split Hopkinson pressure bar method and uniaxial compression of cylindrical specimens in Gleeble simulator. Steel of chemical composition Fe-0.58%C-1.80%Si-1.95%Mn-1.3Cr-0.7Mo (weight %), after isothermal heat treatment at 210°C, is characterized by following mechanical properties determined at static tensile test: yield strength YS0.2 = 1.3 GPa; ultimate tensile strength UTS = 2.05 GPa; total elongation E = 12%, hardness 610 HV and Charpy-V impact toughness 24 J at +20℃ and 14 J at -40℃. Stress-strain curves obtained for pre-stressed material before the next dynamic compression and after repeated compressions were analysed. Microstructure of the deformed specimens in areas of the dynamic impact was investigated. The effects of the dynamic repeated impact on changes in characteristics of the investigated material, in that on strain hardening mechanism, were established. Critical strains of 5.3% at strain rate 910 s-1 and about 10% at strain rate 50 s-1 for the nanostructured bainite were determined. Exceeding the critical strain under uniaxial repeated high-strain-rate compression, resulted in decreasing of ability of the steel for further plastic deformation and strain hardening.
PL
W artykule przedstawiono wyniki badań nanostrukturalnej stali bainitycznej poddanej wielokrotnym odkształceniom dynamicznym z zastosowaniem metody pręta Hopkinsona oraz próby ściskania jednoosiowego próbki walcowej w symulatorze Gleeble. Stal o składzie chemicznym Fe-0,58%C-1,80%Si-1,95%Mn1,3Cr-0,7Mo (% masowe) po wygrzewaniu izotermicznym w temperaturze 210°C charakteryzują następujące właściwości mechaniczne wyznaczone w statycznej próbie rozciągania: Rp0,2 = 1,3 GPa; Rm = 2,05 GPa; wydłużenie całkowite A = 12%, twardość 610 HV oraz udarność KV+20℃ = 24 J i KV-40℃ = 14 J. Analizie poddano krzywe naprężenie-odkształcenie uzyskane dla materiału wstępnie odkształconego przed kolejnym ściskaniem dynamicznym oraz po ściskaniu wielokrotnym. Próbki po odkształceniu poddano badaniom mikrostruktury w obszarach oddziaływania dynamicznego. Określono wpływ dynamicznych obciążeń wielokrotnych na zmiany charakterystyk badanego materiału, m.in. na mechanizm umocnienia odkształceniowego. Wyznaczono odkształcenie krytyczne dla stali nanostrukturalnej zależne od prędkości odkształcenia wynoszące 5,3% (910 s-1) oraz ok. 10% (50 s-1). Przekroczenie odkształcenia krytycznego w warunkach powtórnego jednoosiowego ściskania dynamicznego, skutkuje spadkiem zdolności stali do odkształcenia plastycznego i umocnienia odkształceniowego.
4
Content available remote Etapowa obróbka cieplna stali nanobainitycznych
PL
Parametry finalnej obróbki cieplnej stali nanobainitycznej polegającej na wygrzewaniu izotermicznym charakteryzuje niska temperatura procesu, ale i bardzo długi czas obróbki, od kilkudziesięciu do ponad stu godzin. Z tego powodu stanowią one wciąż aktualny przedmiot badań mających na celu jednoczesną poprawę właściwości użytkowych oraz obniżenie kosztów wytwarzania. W artykule przedstawiono zagadnienie optymalizacji parametrów obróbki cieplnej w celu skrócenia czasu wygrzewania izotermicznego stali nanobainitycznej.
EN
The parameters of the final heat treatment of nanobainite steels consisting in isothermal annealing are characterized by low temperature but very long duration, from several dozens to over one hundred hours. Therefore they are still the subject of research aiming at improving the performance properties and reducing the production costs. The issue of the optimization of the heat treatment parameters in order to shorten the duration of the isothermal annealing of nanobainite steels is presented in the article.
5
Content available remote Technological Properties and Applications of High-Carbon Nanobainitic Steels
EN
Steels belong to the most popular structural materials. Depending on their chemical compositions and applied heat or thermo-mechanical treatment, steels are characterised by various microstructures as well as diverse mechanical and functional properties. Recent years have seen the significant development related to the design of chemical compositions and manufacturing technologies used in the production of nanostructural steels. The article describes the methods used when manufacturing nanostructural steels and presents characteristics of selected i.e. high-strength nanobainitic steels in terms of their microstructure as well as mechanical and functional properties. The second part of the article is concerned with the present and prospective applications of nanobainitic steel products as well as summarises information found in related reference publications regarding the above-named steels.
PL
Stal należy do najczęściej stosowanych materiałów konstrukcyjnych i w zależności od składu chemicznego oraz obróbki cieplnej lub obróbki cieplno-plastycznej (termomechanicznej) charakteryzuje się różnymi typami mikrostruktury oraz różnym poziomem właściwości mechanicznych i użytkowych. W ostatnich latach nastąpił znaczny rozwój w zakresie projektowania składu chemicznego i technologii wytwarzania stali nanostrukturalnych. W artykule opisano sposoby wytwarzania stali nanostrukturalnych oraz przedstawiono charakterystyki wybranej klasy stali nanostrukturalnych - wysokowytrzymałych stali nanobainitycznych, w zakresie budowy mikrostrukturalnej oraz właściwości mechanicznych i użytkowych. W drugiej części artykułu podano obecne i perspektywiczne zastosowania wyrobów ze stali nanobanitycznych oraz podsumowano doniesienia literaturowe dotyczące technologii spawania tych stali.
PL
W artykule przedstawiono technologie obróbki cieplnej dwóch grup gatunkowych stali ultrawytrzymałych. Opisane etapy procesów wytwarzania wyrobów z tych stali obejmują niekonwencjonalne zabiegi cieplne, niestosowane w technologiach standardowych. W przypadku stali nanostrukturalnej bainityczno-austenitycznej NANOS-BA® niestandardową operacją jest proces długotrwałego niskotemperaturowego wygrzewania izotermicznego, który stanowi finalny etap wytwarzania i kształtuje właściwości użytkowe wyrobów. W odniesieniu do stali maraging opisano nowy sposób optymalizacji procesu starzenia w celu poprawy właściwości plastycznych materiału. Podano przykład realizacji procesu obróbki cieplnej blach ze stali NANOS-BA® w warunkach przemysłowych.
EN
Final heat treatment technologies for two classes of ultra-strength steels are presented in the paper. The described stages of production processes comprise thermal operations not used in standard heat treatment technologies. For the nanostructured bainite-austenite NANOS-BA® steel a process of unconventional long-lasting low-temperature isothermal heating is applied to obtain required properties of products. In the case of maraging steels, a new method of the optimisation of standard ageing heat treatment to improve ductility of the steels has been described. An example of industrial heat treatment of sheets made of the NANOS-BA® steel is presented.
PL
Artykuł zawiera najważniejsze rezultaty projektu pt. „Technologie wytwarzania supertwardych materiałów nanostrukturalnych ze stopów żelaza oraz ich zastosowanie w pancerzach pasywnych i pasywno-reaktywnych” UDAPOIG.01.03.01-00-042/08-05, zrealizowanego w okresie w okresie 1.02.2009 – 31.08.2013 przez Instytut Metalurgii Żelaza (lider konsorcjum) oraz Wojskowy Instytut Techniczny Uzbrojenia (członek konsorcjum). Celem projektu było opracowanie gatunków stali o strukturze nanokrystalicznej przeznaczonych do zastosowania w konstrukcji pancerzy chroniących przed przebiciem pociskami przeciwpancernymi oraz opracowanie modeli pancerzy zawierających warstwy z opracowanych gatunków stali. Do badań wytypowano trzy rodzaje materiałów: superczyste wysokowytrzymałe stale maraging, wysokowęglowe stale bainityczne o strukturze nanokrystalicznej oraz dwufazowe nanokrystaliczno – amorficzne stopy żelaza. Zaprojektowano nowy gatunek stali ultrawytrzymałej (oznaczony NANOS-BA) o składzie chemicznym 0,6%C-1,8%Si-2,0%Mn + dodatki Cr, Co, Mo, V, zapewniającym wytworzenie nanostruktury składającej się z nanolistew bezwęglikowego bainitu i austenitu resztkowego. Opracowano wytyczne do przemysłowej technologii wytwarzania blach ze stali NANOS-BA o grubości z zakresu 4÷20 mm i ich obróbki cieplnej. Po fi nalnej obróbce cieplnej właściwości mechaniczne blach NANOS-BA są następujące: Rm >1,9 GPa, R 0,2 >1,3 GPa, A5 > 14%, HV10 > 600. Zaprojektowano zmodyfikowane gatunki ultrawytrzymałych stali maraging w klasach od MS350 do MS550 i parametry niestandardowej obróbki cieplnej zwiększającej ciągliwość oraz nową stal umacnianą wydzieleniowo o obniżonej w stosunku do stali typu maraging zawartości pierwiastków stopowych, oznaczoną NANOS-3D. Opracowano skład chemiczny stopu na bazie żelaza Fe-10%Mo-3%Cr-3,2%C-1,2%B charakteryzujący się zdolnością do morfizacji przy stosunkowo małej szybkości chłodzenia ze stanu ciekłego (rzędu 102 ºC/s). Zbudowano i uruchomiono stanowisko laboratoryjne do topienia i odlewania stopów na bazie Fe w formie elementów o grubości do 5 mm wykazujących strukturę nanokrystaliczno-amorficzną. Osiągnięcie poziomu pozwalającego na uzyskanie wyrobów amorficznych o wymaganym zespole właściwości do zastosowań przemysłowych wymaga dalszych badań. Opracowano modele numeryczne do symulacji oddziaływania pocisków z pancerzem z blachy stalowej na bazie programów LS-DYNA i AUTODYN. Na podstawie wyników badań ostrzałem stwierdzono, że zdolność ochronna płytek ze stali NANOS-BA i ze stali maraging o zoptymalizowanych właściwościach jest wyższa od zdolności ochronnej płyt stalowych o najwyższych parametrach dostępnych obecnie na rynku. Oceniając właściwości mechaniczne, poziom ochrony balistycznej, koszty wytwarzania i możliwość uruchomienia produkcji w kraju, do przemysłowego wytwarzania elementów pancerzy wytypowano stal nanobainityczną NANOS-BA. Zaprojektowano konstrukcję oraz opracowano dokumentację konstrukcyjną i wykonawczą modułu pasywnego pancerza warstwowego w wersji produkcyjnej, zawierającego warstwę z opracowanej w projekcie stali NANOS-BA.
EN
The most important results of the project ”Technology of production of superhard nanostructured Fe–based alloys and their application in passive and passive-reactive armours” UDA-POIG.01.03.01-00-042/08-05, carried out in the period of 1.02.2009 – 31.08.2013 by Instytut Metalurgii Żelaza (lider of the consortium) and Wojskowy Instytut Techniczny Uzbrojenia (member of the consortium) are reported in the paper. The main goal of the project was to develop new nanostructured steel grades intended for application in armour constructions protecting against anti-tank ammunition as well as to develop armour models containing layers made of the developed steel grades. Three types of materials were chosen for investigation: ultra-clean high-strength maraging steels, high-carbon bainitic steels with nanocrystalline structure and dual-phase nanocrystalline – amorphous iron alloys. A new grade of medium alloy ultra-strength steel (named NANOS-BA) containing 0.6%C-1.8%Si-2.0%Mn + additions of Cr, Co, Mo, V allowing to form the nanostructure comprising nano-laths of carbideless bainite and retained austenite was developed. The guidelines and preliminary parameters of industrial technology for manufacturing of 4-20 mm thick plates from NANOS-BA steel were worked out. After the final heat treatment the plates characterised with the following properties: Rm >1.9 GPa, R 0.2 >1.3 GPa, A5 > 14%, HV10 > 600. Modified grades of ultra-strength maraging steels of classes from MS350 to MS550 were designed and parameters of non-standard heat treatment increasing the toughness were proposed and a new precipitation strengthened steel grade named NANOS-3D, containing lower amount of alloying elements in comparison with maraging steels was designed. A composition of iron – based alloy Fe-10%Mo-3%Cr-3.2% C-1.2%B characterised with amorphisation ability at relatively low cooling rate of about 102 ºC/s was developed. Experimental facilities for melting and casting of Fe – based alloys with nanograined – amorphous structure in the form of up to 5 mm thick components was designed and commissioned. Manufacturing of several millimetre thick metallic alloys with amorphous structure is a new method in the world and achieving the level allowing to get the products of required set of properties for industrial applications needs further research to be undertaken. Numerical models based on LS-DYNA and AUTODYN programmes to simulate the interaction between projectiles and the armour made of steel plate were developed. From analysis of the fi ring tests results it was found that the protection ability of specimens made of NANOS-BA steel and maraging steels with the optimised properties was higher than the protection ability of the steel plates with the highest currently available parameters. Based on assessment of mechanical properties, level of protection ability, manufacturing costs and possibility of starting domestic production, nanobainitic steel NANOS-BA was selected for industrial production of armour components. The construction design and technical specifications enabling industrialproduction of a module of the passive layered armour containing a NANOS-BA layer were worked out.
PL
Opisano i zilustrowano wynikami badań, morfologiczne cechy struktury i charakterystyki mechaniczne grupy gatunkowej stali nanobainitycznych, do której należą nanostrukturalne stale dwufazowe bainityczno-austenityczne i trójfazowe bainityczno-austenityczno-martenzytyczne. Przedstawiono wyniki badań wpływu procesów zachodzących w badanych stalach w trakcie wytwarzania, takich jak segregacja międzydendrytyczna pierwiastków stopowych powstająca w wyniku krzepnięcia, odwęglenie w wyniku wysokotemperaturowych obróbek cieplnych, skłonność do pękania w trakcie chłodzenia z zakresu trwałości austenitu - na strukturę i właściwości półwyrobów i wyrobów. Zaproponowano metody zmniejszenia niepożądanych skutków wymienionych procesów. Na podstawie dostępnych źródeł informacji przedstawiono aktualny stan komercjalizacji gatunków stali nanobainitycznych w świecie oraz działania Instytutu Metalurgii Żelaza mające na celu wdrożenie wyników zrealizowanych projektów dotyczących tej nowej klasy stali konstrukcyjnych, na tle konkurencji z obecnie stosowanymi gatunkami ultrawytrzymałymi, głównie ze stalami stopowymi ulepszanymi cieplnie.
EN
Morphological features of microstructure and mechanical characteristics of nanobainitic steel grades, comprising dual phase bainite-austenite and triple phase bainite-austenite-martensite nanostructured steels, were described and exemplified by research outputs. Results of investigation of the influence of processes occurring in the investigated steels during manufacturing - such as interdendritic segregation of alloying elements arising as the effect of solidification, decarburisation caused by high temperature heat treatments, propensity to cracking due to cooling from the austenite temperature range - on microstructure and properties of the semi-products and products were presented. Methods for reducing the adverse infl uence of the mentioned processes were proposed. Based on available information the current status of commercialisation of nanobainitic steels in the world and activities of Instytut Metalurgii Żelaza aimed at application of the results of the accomplished projects concerning this new structural steels were presented, taking into account the competition with the ultra-strength steel grades currently used, mainly with the quenched and tempered grades.
PL
Wykonano badania odporności na zużycie erozyjne nanostrukturalnej stali bainityczno-austenitycznej (NANOS-BA ®). Wyniki badań wykazały wyższą o ok. 10% odporność stali NANOS-BA® na zużycie erozyjne w warunkach oddziaływania cząstek uderzających pod kątami: 30°, 45°, 60° i 90° w porównaniu do komercyjnej stali trudnościeralnej o twardości 600 HV. Opracowane warianty obróbki cieplnej stali bainityczno-austenitycznej umożliwiają zmniejszenie zużycia materiału do 55% w porównaniu do stali trudnościeralnej, dla wybranych kątów padania erodentu. Zrealizowano eksperyment polegający na zastosowaniu mieszadeł wykonanych ze stali NANOS-BA® w mieszarce turbinowej. Mieszadła pracowały 700 minut w warunkach oddziaływania ścierno-udarowego twardych cząstek, a wyniki badań potwierdziły wyższą odporność badanych stali na zużycie niż materiałów dotychczas stosowanych. Przeprowadzono analizę możliwości zastosowania stali NANOS-BA® na elementy trudnościeralne.
EN
Examination of erosive wear resistance of nanostructured bainite-austenite steel (NANOS-BA®) was conducted. The results show higher erosive wear resistance of steel NANOS-BA® by approx. 10% than the commercial wear-resistant steel of hardness 600 HV under conditions of particles impact at angles: 30°, 45°, 60° and 90°. The newly developed variants of heat treatment of NANOS-BA® steel cause a reduction of wear to 55% less than that of the wear resistant steel, depending on the angle of erosion particles impact. An experiment of applying stirrers made of NANOS-BA® steel installed in a turbine mixer used for mixing fine grained hard materials was carried out. Stirrers worked in aggressive environment under the impact of abrasive hard particles about 700 minutes. The results of investigation confirmed the higher wear resistance of stirrers made of NANOS-BA® steel in comparison with materials used so far. Analysis of application possibility of NANOS-BA® steel for wear resistant elements was carried out.
PL
W artykule przedstawiono wyniki badań dynamicznych wysokowytrzymałej stali nanostrukturalnej, planowanej do zastosowania w warunkach wysokoenergetycznych obciążeń udarowych. Eksperymenty obejmowały szeroki zakres prędkości odkształcenia i sposobu odkształcenia skutkujących powstaniem zróżnicowanych stanów naprężenia i odkształcenia. Badania dynamiczne realizowano w testach ściskania jednoosiowego z prędkością do 200 s-1 w symulatorze Gleeble, metodą dzielonego pręta Hopkinsona (SHPB) w celu wyznaczenia dynamicznych krzywych płynięcia przy prędkości odkształcenia do 5,1*103 s-1 oraz w testach ostrzałem. Analizie poddano zmiany mikrostruktury będące wynikiem zastosowania wymienionych sposobów odkształcenia. Opracowano charakterystyki materiałowe wysokowytrzymałej stali nanostrukturalnej i wskazano czynniki decydujące o wysokiej zdolności do pochłaniania i rozpraszania energii udarowej.
EN
Results of dynamic examination of high-strength nanostructured steel intended for use in the high energy impact conditions are presented in the paper. Experiments cover wide range of strain rate and method of deformation resulting in different stress and strain state. Dynamic tests of uniaxial compression with strain rate up to 200 s-1 in the Gleeble simulator, the split Hopkinson pressure bar (SHPB) method to determine dynamic curves of plastic flow at strain rate up to 5.19*103 s-1 and firing tests were carried out. Microstructure changes resulted from the above mentioned methods of deformation were analyzed. Characteristics of high-strength nanostructured steel were determined and factors responsible for high ability to energy absorption and dissipation were indicated.
EN
Nanostructured bainite-austenite steels are applied in the armours construction due to their excellent combination of strength and ductility which enables to lower the armour weight and to improve the protection efficiency. Mechanical properties of the bainite-austenite steels can be controlled in the wide range by chemical composition and heat treatment. In the paper the results of investigation comprising measuring of quasi - static mechanical properties, dynamic yield stress and firing tests of bainite-austenite steel NANOS-BA® are presented. Reported results show that the investigated bainite-austenite steel can be used for constructing add-on armour and that the armour fulfils requirements of protection level 2 of STANAG 4569. Obtained reduction in weight of the tested NANOS-BA® plates in comparison with the present solutions is about 30%.
PL
Nanostrukturalne stale bainityczno – austenityczne stosowane do konstrukcji osłon balistycznych ze względu na znakomitą kombinację wytrzymałości i ciągliwości umożliwiają obniżenie masy własnej osłon i podwyższenie ich skuteczności ochronnej. Właściwości mechaniczne stali bainityczno – austenitycznych mogą być kontrolowane w szerokim zakresie poprzez modyfikację składu chemicznego i parametrów obróbki cieplnej. W artykule przedstawiono wyniki badań właściwości mechanicznych wyznaczanych w testach statycznych i dynamicznych oraz wyniki prób przestrzeleniowych. Przedstawione wyniki badań wskazują, że stale bainityczno – austenityczne (NANOS-BA®) mogą zostać wykorzystane do konstrukcji opancerzenia o masie własnej mniejszej o 30 % w stosunku do rozwiązań stosowanych obecnie dla wymaganego 2 poziomu ochrony według STANAG 4569.
EN
The paper includes results of firing tests of the steel plates with nano-structures, i.e. bainitic NANOS-BA® and maraging of size 50x50x5-10 mm, 100x100x5-10 mm and 150x150x5-10 mm, placed on the armour plate RHA (Rolled Homogenous Armour) type Armox 500T or Armox 600T of size 500x500x10 mm, so called "witness plate". There are also presented results of firing tests of the composite space panels CAWA-3+ and CAWA-4 for protection of light armoured vehicles against the anti-tank ammunition type B-32 of 12.7 mm and 14.5 mm calibre. The space panels of size 3300x17.2-22 mm and 254x300x17.2-22 mm were placed at the distance L< 150 mm from the protected thin armour RHA type Armox 500T of 8 mm thickness. These panels included, among others steel plates with nano-structures (of size from 150x150x5-10 mm to 300x350x7-8 mm), i.e. bainitic NANOS-BA® and maraging, armoured steel plates and light metal plates. Effective stopping Af se projectiles in the tested panels was achieved without any traces of the projectile impact on toe RHA plate of 8 mm thickness.
PL
Artykuł zawiera wyniki badań ostrzałem płyt ze stali nanostrukturalnych, tj. bainitycznych NANOS-BA® i maraging o wymiarach 50x50x5-10 mm, 100x100x5-10 mm oraz 150x150x5-10 mm umieszczonych na płycie pancernej RHA (Rolled Homogenous Armour) typu Armox 500T lub Armox 600T o wymiarach 500x500x10 mm, tzw. płycie "świadek" Przedstawiono również wyniki ostrzałów kompozytowych paneli przestrzennych CAWA-3+ i CAWA-4 do ochrony o opancerzonych pojazdów przed przebiciem pociskami przeciwpancernymi B-32 kalibru 12.7 mm i 14.5 mm. Panele przestrzenne o wymiarach 300x300x17.2-22 mm i 254x300x17.2-22 mm umieszczono w odległości L < 150 mm od ochranianego cienkiego pancerza RHA typu Armox 500T o grubości 8 mm. Panele te zawierały między innymi płyty ze stali nanostrukturalnych (o wymiarach od 150x150x6-10 mm do 300x350x7-8 mm), tj. bainityczne (NANOS-BA®) i maraging, stalowe płyty pancerne oraz płyty z metali lekkich. Uzyskano skuteczne zatrzymanie tych pocisków w badanych panelach bez śladów uderzenia pocisku na płycie RHA o grubości 8 mm.
PL
Wykonano wstępne badania mechanizmów umocnienia i odkształcenia plastycznego dwóch nowoopracowanych gatunków ultrawytrzymałych stali konstrukcyjnych o strukturze nanokrystalicznej (nanoziarnistej). Badania wykonano na stali nanokompozytowej bainityczno-austenitycznej (NANOS-BA) oraz na stali umacnianej jednocześnie trzema typami nanowydzieleń (NANOS-D3). Praca zawiera opis mechanizmów odkształcenia w skali makro w oparciu o analizę wyników jednoosiowego rozciągania oraz wstępną charakterystykę zmian zachodzących w strukturze badanych stali spowodowanych odkształceniem. Stwierdzono, że badane stale różnią się znacznie wartością wykładnika umocnienia n w równaniu Ludwika-Hollomona. Struktura stali NANOS-BA zbudowana jest z pakietów nanolistew ferrytu bainitycznego o dużej gęstości dyslokacji i z nanolistew austenitu resztkowego. W stali NANOS-D3 zidentyfikowano nanowydzielenia równomiernie rozmieszczone w osnowie.
EN
The initial research on mechanisms of strengthening and plastic deformation of two newly developed grades of ultra-strength structural steels with nanocrystalline (nanograin) structure was carried out. The research was performed on nanocomposite bainite-austenite steel (NANOS-BA) and on steel strengthened simultaneously with three types of nanoprecipitations (NANOS-D3). This work includes the description of strain mechanisms in macro scale based on the analysis of results of uniaxial tension and the initial characteristics of changes occurring in the structure of tested steels caused by the strain. The tested steels were found to significantly differ in the strain-hardening coefficient n in the Ludwik-Hollomon equation. The structure of NANOS-BA steel consists of the packages of bainitic ferrite nanolaths with high dislocation density and residual austenite nanolaths. In NANOS-D3 steel, the nanoprecipitations uniformly distributed in the matrix were identified.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.