Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  stal austenityczna AISI 316L
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main purpose of the work is to show a significant improvement of AISI 316L biomaterial after magnetoelectropolishing MEP. The studies were realized by taking XPS measurements on the steel samples after three surface treatments: abrasive polishing MP, standard electropolishing EP, and magnetoelectropolishing MEP to reveal the great advantage of magnetoelectropolished biomaterial over the 316L steel surface properties after other finishing operations. Moreover, a variety of electropolishing conditions (EP – without stirring, MIX – using electrolyte mixing) and parameters (current density from the plateau level EP, up to EP1000, meaning 1000 A/dm2) were considered and studied. Afterwards, basing on the XPS survey, the high resolution spectra were determined concerning three general elements of the 316L steel: iron, chromium, and oxygen. At the end, chromium compounds to iron compounds ratio (Cr-X/Fe-X) and Cr/Fe ratio could be calculated to reveal the optimum conditions of the studies. The main achievement of the work is proving the outstanding features of stainless steel biomaterial after MEP.
PL
W artykule przedstawiono wyniki pomiarów składu chemicznego warstwy pasywnej wytworzonej na stali austenitycznej AISI 316L po polerowaniu elektrochemicznym w warunkach bez mieszania elektrolitu (EP), z mieszaniem elektrolitu (MIX), oraz po magnetoelektropolerowaniu (MEP). Wszystkie próby polerowania elektrochemicznego prowadzono w mieszaninie kwasów ortofosforowego i siarkowego o składzie objętościowym 6:4 w temperaturze (655) C przy zastosowaniu gęstości prądu na poziomie plateau, 50 A/dm2, 200 A/dm2, i 1000 A/dm2 oraz jednakowym czasie obróbki wynoszącym 3 minuty. Proces magnetoelektropolerowania MEP prowadzono w stałym polu magnetycznym (B ≈ 350 mT). Dodatkowo, kilka prób MEP wykonano z parametrami i ≈ 200 A/dm2, w polu magnetycznym o natężeniu B ≈ 420 mT. Skład chemiczny warstwy wierzchniej stali AISI 316L zbadano przy użyciu fotoelektronowej spektroskopii promieniami Roentgena (XPS) po trzech obróbkach: polerowaniu ściernym MP, polerowaniu elektrolitycznym EP, oraz po MEP. Warunki elektropolerowania obejmowały mieszanie elektrolitu (MIX), lub jego brak (EP), oraz gęstość prądu od wartości plateau do 1000 A/dm2 (EP1000). Po polerowaniu, w oparciu o pomiary XPS, uzyskano widma wysokiej rozdzielczości dotyczące trzech głównych pierwiastków stali 316L: żelaza, chromu i tlenu. Podstawowe zadanie polegało na wyznaczeniu zmian w stosunku zawartości chromu do żelaza w warstwie wierzchniej badanej stali austenitycznej AISI 316L, w zależności od warunków obróbki elektrochemicznej. Przedstawiono widma XPS wysokiej rozdzielczości chromu Cr 2p oraz żelaza Fe 2p badanej stali po poszczególnych obróbkach elektrochemicznych. Tabelarycznie przedstawiono analizę danych XPS przez dopasowanie jednopikowe O 1s. Następnie pokazano skład chemiczny warstwy wierzchniej obliczony w oparciu o trzy sygnały: Fe 2p, Cr 2p, O 1s oraz podano stosunki Cr-X/Fe-X i Cr/Fe. Metoda badania XPS składu powierzchni została przedstawiona we wcześniejszych pracach Autorów, przy czym sposób podejścia do dwupikowej analizy zaprezentowano przykładowo na pierwszych dwu rysunkach niniejszej pracy. Badania XPS przeprowadzono na spektrometrze SCIENCE SES 2002. Widma rentgenowskie zapisywano przy normalnej emisji. W celu optymalizacji stosunku sygnału do szumu, jeden cykl pomiarowy XPS obejmował 10 przejść. Następnie wyznaczono stosunek Cr/Fe dla wszystkich wykonanych pomiarów. Do analizy danych XPS posłużono się programem Casa XPS 2.3.14. Wykorzystując program Casa XPS 2.3.14, zgodnie z zaproponowanym algorytmem, dokonano interpretacji wyników XPS. W końcu wyznaczono stosunki związków (Cr-X/Fe-X) i Cr/Fe celem pokazania optimum. Głównym osiągnięciem pracy jest pokazanie znacznej poprawy właściwości powierzchni stali 316L po MEP.
EN
The results presented in the paper have been obtained during several last years. They represent chemical composition of the passive layer measurements, its uniform and pitting corrosion resistance as well as nanohardness and reduced Young's modulus for the austenitic steel AISI 316L. The main goal is to present a new and modern method of finishing - electrochemical polishing in a magnetic field MEP with respect to the standard abrasive polishing MP and electrochemical one EP. The chemical composition of the surface layer of AISI 316L were examined using X-ray photoelectron spectroscopy (XPS); the corrosion rates were determined from potentiodynamic polarization tests. Nanohardness and reduced Young's modulus were obtained from nanoindentation measurements. The main achievement of the paper is revealing the chemical and mechanical properties of the surface layer formed after polishing MEP against the MP and EP treatments.
PL
W artykule przedstawiono kompaktowo wyniki kilkuletnich badań i pomiarów składu chemicznego warstwy pasywnej, jej odporności na korozję równomierną oraz wżerową, jak i nanotwardość oraz zredukowany moduł Younga dla austenitycznej stali AISI 316L. Autorzy zaprezentowali nowoczesną metodę obróbki wykończeniowej – elektrochemiczne polerowanie w polu magnetycznym MEP w odniesieniu do standardowej obróbki ściernej MP oraz elektrochemicznej EP. Skład chemiczny warstwy wierzchniej stali AISI 316L zbadano przy użyciu fotoelektronowej spektroskopii promieniami Roentgena (XPS); szybkości korozji wyznaczono z badań potencjodynamicznych, a nanotwardość oraz zredukowany moduł Younga z badań nanoindentacyjnych. Głównym przedmiotem pracy jest prezentacja wpływu pola magnetycznego na własności chemiczne oraz mechaniczne warstwy wierzchniej powstałej po polerowaniu MEP na tle obróbek MP i EP. Przeprowadzone badania wykazały, że odporność na korozję wżerową powierzchni po elektrochemicznym polerowaniu w polu magnetycznym MEP wzrasta około dwukrotnie w stosunku do standardowego polerowania elektrochemicznego EP, co potwierdzają również wyniki badań XPS, obrazujące stosunek związków chromu do związków żelaza. Odnotowano również zmianę nanotwardości oraz zredukowanego modułu Younga warstw wierzchnich otrzymanych poprzez obróbkę EP i MEP, co dodatkowo potwierdza istotny wpływ pola magnetycznego na właściwości zarówno elektrochemiczne jak i mechaniczne warstwy wierzchniej.
EN
The article presents the results of the investigation on the influence of Al2O3 particles on the microstructure and properties of composites with an austenitic steel matrix. Two different composites were studied: AISI 316L stainless steel reinforced with 10 vol. % and 20 vol. % of Al 2O3. The samples were prepared by means of the powder metallurgy process using pressure sintering (HP-HT). The sintering process was carried out at the temperature of 1200°C and pressure of 7±0.2 GPa for 60 seconds. The analysis of the composites included: microstructural investigation by means of SEM and examination of the physical and mechanical properties (density, measurements of Young’s modulus, hardness, and compression strength). The results showed that the Al 2O3 particle addition was very effective to improve the properties of the composites with an austenitic steel matrix. The increase of Young’s modulus, hardness and compression strength with an increase of Al2O3 phase content was shown . The composites with 20 vol. % of Al2O3 achieved the highest properties. The microstructural investigations revealed that the Al2O3 phases are dispersed uniformly in the stainless steel matrix. These results can be useful in determining the conditions for sintering austenitic AISI 316L stainless steel reinforced with various volume fractions of Al 2O3 ceramics. The presented studies are the introduction to the manufacturing of materials with better corrosion and wear resistance in relation to AISI 316L steel.
PL
W pracy przedstawiono wyniki badań wpływu ceramiki Al 2O3 na właściwości i mikrostrukturę kompozytów. Zbadano dwa warianty kompozytów o osnowie stali austenitycznej AISI 316L zawierających 10% obj. oraz 20% obj. ceramiki Al 2O3. Próbki wytworzono na drodze metalurgii proszków, stosując spiekanie ciśnieniowe (HP-HT). Proces spiekania przeprowadzono w temperaturze 1200°C, stosując ciśnienie 7±0,2 GPa oraz czas spiekania 60 sekund. Przeprowadzono badania mikrostrukturalne za pomocą SEM oraz badania właściwości fizycznych i mechanicznych (gęstość, pomiar modułu Younga i twardości oraz próba ściskania). Wyniki badań wykazały, że dodatek ceramiki Al 2O3 poprawia właściwości kompozytów o osnowie stali austenitycznej. Wraz ze zwiększeniem zawartości ceramiki Al 2O3 zaobserwowano zwiększenie wartości modułu Younga, twardości oraz wytrzymałości na ściskanie. Dla kompozytów umacnianych 20% obj. ceramiki Al2O3 uzyskano najlepsze właściwości. Badania mikrostrukturalne potwierdziły jednorodne rozmieszczenie ceramiki Al2O3 w osnowie stali austenitycznej. Otrzymane wyniki stanowią podstawę do określenia najkorzystniejszych warunków spiekania stali austenitycznej AISI 316L z różnym udziałem objętościowym ceramiki Al2O3. Przedstawione badania stanowią wstęp do otrzymania materiału charakteryzującego się lepszymi właściwościami (odpornością na korozję i odpornością na ścieranie) w porównaniu ze stalą AISI 316L.
EN
Powder metallurgy (P/M) is an ideal technique for producing the dispersion- strengthened materials as it produces a homogeneous distribution of dispersoids in the matrix. Dispersion strengthening by addition of the ceramic particles improves the mechanical properties of the sintered stainless steels. In this work, the AISI 316L stainless steel was chosen as a matrix alloy and was reinforced with TiB2 particles. The titanium diboride (TiB2) was selected as reinforcement because it exhibits a very high hardness, high strength at elevated temperature and good thermal stability. The influence of TiB2 ceramics on the properties and microstructure of the AISI 316L stainless steel was investigated. In the present study, the high temperature-high pressure (HT-HP) method to prepare the austenitic AISI 316L stainless steel reinforced with 2 vol. % TiB2 ceramics was used. Materials were sintered at pressure of 5 Pa and 7.5 GPa and at temperature of 900÷1300°C. The duration of sintering was 60 seconds. Mechanical properties were determined by Vickers hardness test and the compression test. Young's modulus measurements were carried out using ultrasonic method. The microstructure features of the sintered materials were revealed by means of the light microscope and scanning electron microscope. The results show that the properties of the sintered materials depends on the applied conditions of the sintering. The hardness and the compression strength decrease with increasing temperature, while the Young's modulus increases. The materials sintered at pressure of 7.5 GPa exhibit better properties compared to the samples sintered at 5 GPa. The microstructural investigations indicated that the TiB2 ceramics was distributed not evenly along the grain boundaries of steel.
PL
Metalurgia proszków jest efektywną technologią wytwarzania materiałów umacnianych dyspersyjnie, gwarantującą jednorodne rozmieszczenie fazy umacniającej w osnowie. Umocnienie dyspersyjne cząstkami ceramicznymi pozwala poprawić właściwości mechaniczne spiekanych stali. W pracy zastosowano stal austenityczną AISI 316L jako osnowę oraz ceramikę TiB2 jako fazę umacniającą. Diborek tytanu (TiB2) został wybrany jako umocnienie, ponieważ charakteryzuje się bardzo wysoką twardością, wysoką wytrzymałością w podwyższonej temperaturze oraz dobrą stabilnością cieplną. Głównym celem pracy było zbadanie wpływu ceramiki TiB2 na właściwości i mikrostrukturę stali austenitycznej AISI 316L. Spiekanie przeprowadzono metodą wysokociśnieniowego-wysokotemperaturowego spiekania (HP-HT). Spiekanie materiałów przeprowadzono pod ciśnieniem 5 GPa i 7,5 GPa oraz w temperaturze 900÷1300°C. Czas spiekania wynosił 60 s. Badania właściwości mechanicznych obejmowały próbę mikrotwardości sposobem Vickersa oraz wytrzymałość na ściskanie. Pomiar modułu Younga przeprowadzono metodą ultradźwiękową. Mikrostrukturę umacnianej stali autentycznej AISI 316L obserwowano za pomocą mikroskopu świetlnego oraz skaningowego mikroskopu elektronowego (SEM). Wykazano, że właściwości spiekanej stali AISI 316L umacnianej TiB2 zależą od zastosowanych parametrów spiekania. Wraz ze wzrostem temperatury zaobserwowano zmniejszenie się twardości i wytrzymałości na ściskanie oraz zwiększenie wartości modułu Younga. Stal austenityczna spiekana pod ciśnieniem 7,5 GPa uzyskała lepsze właściwości w porównaniu z materiałami spiekanymi pod ciśnieniem 5 GPa. Badania mikrostruktury wykazały niejednorodne rozmieszczenie ceramiki TiB2 wzdłuż granic ziaren stali austenitycznej.
PL
W pracy zamieszczono wyniki badań dotyczące problematyki związanej ze zwiększeniem przyczepności hydroksyapatytu (HAp), wykonanego metodą zol-żel, do stali austenitycznej (AISI 316L) przez wytworzenie na niej po-średniej warstwy węglowej (metodą RF PACVD), która ma jednocześnie za zadanie ograniczyć metalozę. Wyniki badań jednoznacznie wykazały, że pośrednia warstwa węglowa znacząco zwiększa przyczepność hydroksyapatytu do podłoża metalicznego, ograniczając jednocześnie znacząco przenikanie jonów metali do tkanki mięsnej.
EN
The paper contains results of studies concerning the problems associated with increased of hydroxyapatite (HAp) adhesion, manufactured by using Pulse Laser Deposition (PLD) method, to the austenitic steel (AISI 316L) through the coating of carbon interlayer on it, deposited by Radio Freąuency Plasma Assisted Chemical Vapour Deposition (RF PACVD) method which simultaneously has to limit of metalosis process. Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate as well as keep to a minimum metal ions penetration into the tissue.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.