This article presents research carried out using physical data from the experimental construction of an overhead crane. This article aims to determine the dynamic behaviour of the cart-pendulum system when the hoisting mechanism hits the new bumper design at the end of the girder support structure with selected speed and bumper material to the length of the wire rope. This research shows the influence of the horizontal speed of the hoisting mechanism on the bumper force during a collision with a standard buffer and its modifications. The presented model can be the basis for modelling more complex cases, and its assumed role (i.e. the ability to determine the angle of deflection of the rope during an impact) has been confirmed and is possible to use in a specific case of an overhead crane on an industrial scale. Preliminary analysis of the construction of the bumper considered reveals its positive features, aiming, among other goals, to reduce the acceleration and force acting on the crane cart in emergency situations.
Dynamics of the nonlinear spring pendulum is analysed using two asymptotic approaches. The multiple scale method is commonly applied with using two time scales. The purpose of the research is to justify the introduction of an additional third scale. Results of the analysis clearly show that introducing the third scale improve correctness of the approximate analytical solution. The obtained results allow for qualitative and quantitative analysis of the behavior of the studied system with a high accuracy. Calculations are made both in the neighbourhood of the resonance and also far from it.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.