Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sprężyna powietrzna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Air springs applied as shock damping elements are often found in the design of variety modern truck and trailer suspensions. They can also be found as damping and stabilizing suspension elements in the passenger cars and other machines. The advantage of air springs, compared to steel coil springs or leaf springs, is a better damping quality in a wide range of frequencies. The air springs stiffness can be regulated according to the requirements and working conditions. The applied air springs also allow to stabilize the distance between the vehicle body and road level in function of loading. Some proposals of vehicle suspension models can be found in technical literature where the air spring is the main elastic subassembly. Mathematical model descriptions of the suspension with air spring for vehicles apply the thermodynamic laws and relationships between the mechanical forces of cooperating suspension elements, parts geometry (suspension arms), material stiffness (reinforced rubber) and other properties (damping). The results of own investigations on the suspension model of an air spring for cargo trailer have been taken into consideration in this paper. The presented suspension model was applied to design the frame construction of a light stanchion trailer where aerodynamic drag and construction mass were reduced. The suspension model of air springs for a trailer was applied for frame loads evaluation of the light trailer. It was also used for the strength analysis of the frame construction with the reduced mass. The estimated frame loads such as torque, normal forces and bending moments were used for strength estimation of the upgraded trailer frame.
EN
In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into ”mechanical language” enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.