Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spoofer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The need for accuracy, precision, and data registration in underwater positioning and navigation should be viewed as no less stringent than that which exists on the sea surface. In the same way in which GNSS (Global Navigation Satellite System) receivers rely on the signals from multiple satellites to calculate a precise position, undersea vehicles discern their location by ranging to the acoustic signals originating from several fixed underwater acoustic sources using the Time-of-Arrival algorithm (ToA) through the Ordinary Least Squares method (OLS). In this article, the scope has been limited to only considering underwater positioning systems in which the navigation receiver is acoustically passive. The receiver “listens” to the buoys, receives their messages and solves the problem of finding its own position based on the geographical coordinates of the buoys. Often, such systems are called GNSS-like Underwater Positioning Systems (GNSS-like UPS). It is important to note the distinction between general purpose GNSS-like UPS (mainly civil systems) and special purpose GNSS-like UPS (mainly military systems). In this article, only general purpose GNSS-like UPS systems have been considered. Depending on the scale of system’s service areas, GNSS-like UPS are divided into global, regional, zonal and local systems. Only local GNSS-like UPS systems have been considered in this article. The spoofing of acoustic GNSS-like UPS works as follows: the acoustic GNSS signal generator transmits a simulated signal of several satellites. If the level of the simulated signal exceeds the signal strength of the real satellites, the acoustic receiver of an underwater object will “capture” the fake signal and calculate a false position based on it. All receivers that fall into the spoofing zone will calculate the same coordinates, while the receivers located in different places will have a mismatch in the XYZ coordinates.
2
Content available Cloud-based GNSS navigation spoofing detection
EN
Satellite navigation systems are commonly used to precisely determine the trajectory of transportation equipment. The widespread deployment of GNSS is pushing the current receiver technology to its limits due to the stringent demands for seamless, ubiquitous and secure/reliable positioning information. This fact is further aggravated by the advent of new applications where the miniaturized size, low power consumption and limited computational capabilities of user terminals pose serious risks to the implementation of even the most basic GNSS signal processing tasks. This paper has presented the advantage of Cloud-based GNSS Navigation, which facilitates the possibility of developing innovative applications where their particularities (e.g. massive processing of data, cooperation among users, security-related applications, etc.) make them suitable for implementation using Cloud-based infrastructure.
EN
Spoofing, anti-spoofing, jamming and anti-jamming technologies have become an important research topic within the GNSS discipline. While many GNSS receivers leave a large space for signal dynamics, enough power space is left for the GNSS signals to be spoofed and/or jammed. The goal of spoofing is to provide the receiver with a misleading signal, fooling the receiver into using fake signals in the extra space for positioning calculations. The receiver will then generate a false position, thus misleading the navigator. The goal of jamming is to add noise to the satellite signal which leads to fooling the receiver into using “signals plus noise” for positioning calculations. This article discusses the approach to anti-jamming based on the shielding of antennas from the signal jammer.
EN
The idea of C/A codes GPS/GNSS Spoofing (Substitution), or the ability to mislead a satellite navigation receiver into establishing a position or time fix which is incorrect, has been gaining attention as spoofing has become more sophisticated. Various techniques have been proposed to detect if a receiver is being spoofed – with varying degrees of success and computational complexity. If the jammer signals are sufficiently plausible then the GNSS receiver may not realize it has been duped. There are various means of detecting spoofing activity and hence providing effective mitigation methods. In this paper, a novel signal processing method applicable to a single antenna handset receiver for spoofing detection has been described. Mathematical models and algorithms have been developed to solve the problems of satellite navigation safety. What has been considered in the paper is a spoofing detection algorithm based on the analysis of a civil satellite signal generated by mobile C/A GPS/GNSS single-antenna receivers. The work has also served to refine the civilian spoofing threat assessment by demonstrating the challenges involved in mounting a spoofing attack.
EN
Spoofing, anti-spoofing, jamming, and anti-jamming algorithms have become an important research topic within the Global Navigation Satellite System (GNSS) discipline. While many GNSS receivers leave large space for signal dynamics, enough power space is left for the GNSS signals to be spoofed. GNSS signal power on the earth’s surface is around 160 dBW. The goal of spoofing is to provide the receiver with a slightly more powerful misleading signal, stronger than the original GNSS signal, fooling the receiver into using fake signals for positioning calculations. The receiver will generate a misleading position of the navigator. Practical spoofing that provides misleading navigation results of the receiver is difficult to conduct due to the signal infrastructure. Using trivial anti-spoofing algorithms in GNSS receivers, spoofing attacks can be easily detected. The article discusses the vulnerability of unmanned vehicles and provides an approach to anti-spoofing based on measuring distance between two antennas.
EN
Spoofing and antispoofing algorithms have become an important research topic within the GNSS discipline. While many GNSS receivers leave large space for signal dynamics, enough power space is left for the GNSS signals to be spoofed. The goal of spoofing is to provide the receiver with a misleading signal, fooling the receiver to use fake signals in thespace for positioning calculations. The receiver will produce a misleading position solution. The article discusses a new approach to GNSS spoofing based on the application of GNSS signal repeating by potential terrorists. Practical spoofing that provides misleading navigation results at the receiver is difficult to conduct due to the signal infrastructure and by applying trivial anti-spoofing algorithms in GPS receivers, spoofing attacks can be easily detected. To detect spoofing attacks of this type a variety of methods exists. For example, the authors suggest the use of paired navigators and GNSS compasses as detectors of GNSS spoofing.
PL
Algorytmy spoofingu i antyspoofingu stały się ważnym tematem badań w ramach dyscypliny GNSS. Podczas gdy wiele odbiorników GNSS ma dużą przestrzeń dla dynamiki sygnału, wystarczająco dużo miejsca pozostaje dla sygnałów GNSS być sfałszowanym. Celem spoofingu jest dostarczenie odbiornika z sygnałem mylącym oszukać odbiornik w toku obliczenia pozycji. Odbiornik będzie produkować mylących pozycji. W artykule omówiono nowe podejście do spoofingu GNSS w oparciu o zastosowanie sygnału GNSS powtarzając przez potencjalnych terrorystów. Praktyczne spoofing, które zapewnia błędne wyniki nawigacji w odbiorniku jest trudne do przeprowadzenia ze względu na infrastrukturę sygnału oraz stosowanie trywialnych algorytmy anty-spoofingu w odbiorniki GNSS, ataki spoofingu można łatwo wykryć. Do wykrywania ataków fałszowaniu tego rodzaju istnieje wiele różnych metod. Na przykład, autorzy sugerują stosowanie sparowanych nawigatorów i GNSS kompasy jako detektorów spoofingu GNSS.
EN
GNSS-dependent positioning and navigation have a significant impact on everyday life. One of the major problems of modern navigation for both manned and unmanned transport systems is the problem of navigation safety. Therefore, such a widely used system increasingly becomes an attractive target for illicit exploitation by terrorists and hackers acting from various motives. As such, spoofing and antispoofing algorithms have become an important research topic within the GNSS discipline. This paper will provide a review of the navigation and safety problems of unmanned systems. After introducing a spoofing signal model, a brief review of recently proposed anti-spoofing techniques and their performance in terms of spoofingdetection and spoofing mitigation will be provided. This paper will also provide a review of different spoofing scenarios in case of the application of signal repeater as a spoofer.
PL
Pozycjonowanie GNSS i nawigacja posiada znaczny wpływ na życie codzienne. Jednym z głównych problemów współczesnej nawigacji zarówno załogowych i bezzałogowych systemów transportowych jest problem bezpieczeństwa żeglugi. Dlatego takie powszechnie stosowany system staje się coraz bardziej atrakcyjnym celem dla nielegalnego wykorzystywania przez terrorystów i hakerów działających z różnych motywów. Algorytmy spoofingui antyspoofingu stały się ważnym tematem badań w ramach dyscypliny GNSS. Ten artykuł będzie stanowić przegląd nawigacji i bezpieczeństwa problemów systemów bezzałogowych. Po wprowadzeniu model spoofingu sygnału zostaną przedstawione krótki przegląd niedawno zaproponowanej techniki antyspoofingu. Ten artykuł będzie oraz zapewniać przegląd różnych scenariusze w przypadku stosowania wzmacniaku sygnałów, jako spoofer.
EN
The article discusses a new approach to the detection of GNSS spoofing, based on the use of satellite compass. Comparing the results of measurements of GNSS receivers of compass in two modes (normal mode of GNSS navigation and spoofing mode). The studies have shown, that in mode of spoofing attacks in both receivers of satellite compass we have the equality of coordinates, which in algorithm coordinate definitions, determine mathematical indeterminate form 0/0. This means getting out of the operating status of the satellite compass that can be used as an alarm “spoofing attack” to take appropriate security measures of GNSS navigation.
9
EN
Spoofing and antispoofing algorithms have become an important research topic within the GNSS discipline. The power of the GNSS signal on the earth’s surface averages –160 dBw. While many GNSS receivers leave large space for signal dynamics, enough power space is left for the GNSS signals to be spoofed. The goal of spoofing is to provide the receiver with a misleading signal, fooling the receiver to use fake signals in space for positioning calculations. The receiver will produce a misleading position solution. The purpose of this paper is to analyze the vulnerability of the satellite signal in repeater’s output from the viewpoint of GNSS spoofing attacks. The article discusses a new approach to GNSS spoofing, based on the application of GNSS signals repeating by potential terrorists. Practical spoofing that provides misleading navigation results at the receiver is difficult to conduct due to the signal infrastructure, and by applying trivial anti-spoofing algorithms in GPS receivers, spoofing attack can be easily detected. To detect spoofing attacks of this type we have a variety of methods. For example, the authors suggest the use of paired navigators and GNSS compasses as detectors of GNSS spoofing.
EN
Satellite navigation systems are widely used in navigation for precise trajectory determination of transport equipment. In this article mathematical models and algorithms have been developed to solve the problems of precision and safety of satellite navigation. One of the problems is spoofing (substitution) – a situation in which a system (hardware, software, etc.) successfully masquerades as another by falsifying data system and performs illegal actions. What is considered in the paper is spoofing detection algorithm based on the analysis of a civil satellite signal generated by the two receivers but instead a fully functional Spoofer GNSS signal repeater was used. This work is intended to equip GNSS users and receiver manufacturers with authentication methods that are effective against unsophisticated spoofing attacks. The work also serves to refine the civilian spoofing threat assessment by demonstrating the challenges involved in mounting a spoofing attack.
11
Content available Analiz algoritmov detektirovaniâ GNSS-spufinga
EN
The article discusses the new algorithms for detect of GNSS-spoofing based on a comparison of the pseudorange measurements results of navigation satellites and calculate the coordinates of a pair of GNSSreceivers in two modes: the normal GNSS-navigation and mode of the spoofing. The theoretical studies have shown that a single-antenna mode spoofing under certain conditions gives us the same measured pseudoranges. The calculated distance between the two antennas of GNSS-receivers gives us zero. In a mode of the normal GNSS-navigation computed distance between the antennas of the two GNSS-receivers exceeds the true distance to the tens of meters. These differences are used as the basic detection spoofing parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.