Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  spider silk
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This is the first study on composition of fatty acids in hunting web of Steatoda grossa (Theridiidae) spiders and one of only four similar studies ever made. Its main contribution is a discovery that fatty acids not only cover an outside of the web fibers, but they are even more abundantly represented in the fibers’ inner structure. Although little attention has been so far attributed to the contents of fatty acids in spider silks, one has to remember that their biocompatibility combined with an extraordinary tensile strength make them a worth investigating template for material bioengineering studies.
3
Content available remote The tensile behaviour of spider silk
EN
Spider silk has attracted the interest of several researchers in recent years because it displays a unique combination of high tensile strength, high breaking strain and an ultra-low weight. Hitherto, the focus has always been on dragline and viscid silk, whereas research on spider cocoon silk is limited. In order to explain the structure-property relationship of spider silk, the stress-strain behaviour of cocoon and dragline silk is compared in this study. It is shown that both fibres have completely different stress-strain behaviours.In addition, the influence of the testing speed is investigated. For cocoon silk, lower testing speeds result in lower strength, stiffness and higher post-modulus. When the stress-strain curve is simulated by an extended Maxwell model, as testing speed increases, the level of the hardening region is higher, the yield region moves to higher strains and the hardening region in the stress-strain curve becomes more horizontal. However, a speed of 20 mm/min can be considered as a saturation point where the effect of the speed decreases. The influence of the testing speed on dragline silk is clearly less pronounced than for cocoon silk. However, a more detailed study of the stress-strain curves of dragline revealed different possible shapes for the stress-strain behaviour of dragline silk.
4
Content available remote Studies on structure and properties of nephila-spider silk dragline
EN
Spider dragline silk is an extremely strong biopolymer and has unique combination of desirable mechanical properties. In the present paper dragline of Golden Nephila spider was studied for dimensional, structural, physical and tensile properties. The test results established significant variability in diameter and denier of dragline filaments. The filaments possessed nearly circular cross-section and were found to be sensitive to moisture. The draglines exhibited super contraction in water. It has high strength and large elongation to break (45.9 cN/tex and 38.7 %, respectively). X-ray crystallinity of 17.5 % was obtained. The fibres were also subjected to thermo- mechanical and dynamic mechanical analysis.
EN
Using spider silk and collagen as a model, we have investigated the role that various protein primary structural components play in fibre production. Spidroins, spider dragline silk protein components, are essentially characterised by an amino-acid repeat containing a glycine-rich motif (amorphous) followed by an alanine-rich motif (crystalline, putatively responsible for fibre strength). We have tested the importance of alanine runs in these proteins and the role of this motif in the mechanical properties of the resulting fibre. To test the importance of alanine-rich motifs in the spidroin-1 proteins, we engineered three types of spidroin-1-like genes containing sequence encoding for different amounts of alanine repeats in the protein (normal, low, and no alanine residues). We also have engineered three copolymer collagen-spidroin-1 genes using each of the three spidroin-1 synthetic genes. These copolymers were mimicked on the existing natural block collagen-silk-like protein copolymer found in the byssus thread of marine mussels. All of these constructs were introduced in yeast (Pichia pastoris) for protein production. We are currently purifying each of the recombinant proteins for structural analysis (CD-spectroscopy).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.